Vol. 19 No. 3 (2022): Journal of Non Destructive Testing and Evaluation (JNDE), September 2022
Research Papers

Super Resolution Imaging using Off-the-Shelf Ultrasonic Probes

Mohamed Subair Syed Akbar Ali
Postdoc

Published 11-09-2022

Keywords

  • Ultrasonic imaging,
  • Sub-wavelength imaging,
  • Super resolution,
  • Metamaterials,
  • Holey lens,
  • Fabry-Perot resonance,
  • , Evanescent waves,
  • Conical baffle,
  • Commercial Transducers
  • ...More
    Less

How to Cite

Syed Akbar Ali, M. S., Gorthy, S., & Rajagopal, P. (2022). Super Resolution Imaging using Off-the-Shelf Ultrasonic Probes. Journal of Non-Destructive Testing and Evaluation (JNDE), 19(3), 35–41. Retrieved from https://jnde.isnt.in/index.php/JNDE/article/view/11

Abstract

High resolution ultrasonic imaging systems are of much interest in non-invasive diagnostics and non-destructive evaluation. By harnessing the evanescent wavefield, recent developments in metamaterials offer the promise of sub-wavelength and super-resolution imaging, but such advances require sophisticated reception making practical realization challenging. Set in this context, this paper presents the development of a portable device for achieving super resolution ultrasonic imaging using conventional transducers. A prototype of the device has been built and practical super resolution ultrasonic imaging down to one-fifth of the operating wavelength is demonstrated using commercial probes.

References

  1. . Gan, W. S. Acoustical Imaging: Techniques and Applications for Engineers. Chichester, UK: John Wiley & Sons, Ltd, 2012.
  2. . Zhang, X. and Z. Liu (2008b) Super lens to overcome the diffraction limit. Nature Materials, 7(6), 435–441.
  3. . Shekhawat, Gajendra S., Dravid, Vinayak P (2005) Nanoscale Imaging of Buried Structures via Scanning Near-Field Ultrasound Holography, Science, 310 (5745), 89–92.
  4. . Serge Mensaha and Emilie Franceschini (2007) Near-field ultrasound tomography, The Journal of the Acoustical Society of America 121, 1423.
  5. . Pendry, J. B. (2000) Negative refraction makes a perfect lens. Physical Review Letters, 85(18), 3966–3969.
  6. . Veselago, V. G. (1968) The electrodynamics of substances with simultaneously negative values of µ and ε. Sovient Physics Uspekhi, 10, 509-519.
  7. . Smith, D. R., J.B. Pendry and M.C.K. Wiltshire (2004) Metamaterials and negative refractive index. Science, 305, 788-792.
  8. . Cubukcu, E., K. Aydin, E. Ozbay, S. Foteinopoulou and C. M. Soukoulis (2003) Subwavelength Resolution in a Two-Dimensional Photonic-Crystal Based Superlens. Physical Review Letters, 91, 2074
  9. . Liu, Z., S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun and X. Zhang (2007b) Far-Field Optical Superlens. Nano Letters, 7, 403–408
  10. . Liu, Z., H. Lee, Y. Xiong, C. Sun and X. Zhang (2007a) Development of optical hyperlens for imaging below the diffraction limit. Science, 315, 1686
  11. . Cummer, S. A., J. Christensen and A. Alu (2016) Controlling Sound with Acoustic Metamaterials. Nature Review Material, 1, 16001, 1-13.
  12. . Ke, M. Z., Z. Liu, C. Qiu, W. Wang, J. Shi, W. Wen and P. Sheng (2005) Negative-refraction imaging with two-dimensional phononic crystal. Physical Review B, 72, 064306.
  13. . Cheng, Y., C. Zhou, Q. Wei, D. Wu and X. Liu (2013) Subwavelength acoustic focusing by surface-wave-resonance enhanced transmission in doubly negative acoustic metamaterials. Applied Physics Letters, 103, 224104.
  14. . He, Z., F. Cai, Y. Ding and Z. Liua (2008) Subwavelength imaging of acoustic waves by a canalization mechanism in a two-dimensional phononic crystal. Applied Physics Letters, 93, 233503.
  15. . Li, J., L. Fok, X. Yin, G. Bartal and X. Zhang (2009) Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8, 931– 934.
  16. . Zhu, J., J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang and F. J. Garcia-Vidal (2011) A Holey-Structured Metamaterial for Acoustic Deep-Subwavelength Imaging. Nature Physics, 7(1), 52–55
  17. . Estrada, H., P. Candelas, A. Uris, F. Belmar, F. J. Garcia de Abajo and F. Meseguer (2010) Sound transmission through perforated plates with subwavelength hole arrays: A rigid solid model. Wave Motion, 48, 235-242.
  18. . Amireddy, K.K., Balasubramaniam, K., and Rajagopal, P (2016) Holey-structured metamaterial lens for subwavelength resolution in ultrasonic characterization of metallic components, Appl. Phys. Lett., 108, (22), pp. 1–6.
  19. . Amireddy, K.K., Balasubramaniam, K., and Rajagopal, P. (2017) Deep subwavelength ultrasonic imaging using optimized holey structured metamaterials, Sci. Rep., 7, (1), pp. 1–8.
  20. . Syed Akbar Ali, M.S., Amireddy, K.K., Balasubramaniam, K., et al. (2019) Characterization of deep sub-wavelength sized horizontal cracks using holey-structured metamaterials, Trans. Indian. Inst. Met., 72, pp. 2917–2921.
  21. . Amireddy, K.K., Balasubramaniam, K., and Rajagopal, P. (2018) Porous metamaterials for deep sub-wavelength ultrasonic imaging, Appl. Phys. Lett., 113, (12), pp. 1–61.
  22. . Sasaki, K., Nishihira, M., and Imano, K. (2006) Low-frequency air-coupled ultrasonic system beyond diffraction limit using pinhole, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., 45, (5B), pp. 4560–4564.
  23. . Maheswari, H., Syed Akbar Ali, M.S., Rajagopal,P. Ultrasonic imaging beyond diffraction limit using conventional transducers with conical baffles, Electronics Letters, Vol. 56 No. 19 pp. 1019–1022.
  24. . Taubner, T., D. Korobkin, Y. Urzhumov, G. Shvets and R. Hillenbrand (2006) Near-field microscopy through a SiC superlens. Science, 313, 1595.