Vol. 21 No. 2 (2024): Journal of Non Destructive Testing and Evaluation (JNDE), June 2024
Research Papers

The Potential of THz Microscopy for Non-Destructive Evaluation Applications

Published 17-09-2024

Keywords

  • Terahertz,
  • THz Microscopy,
  • THz near-field,
  • Terahertz NDE

How to Cite

E.J.Y. Magaway, & M. Navarro-Cía. (2024). The Potential of THz Microscopy for Non-Destructive Evaluation Applications. Journal of Non-Destructive Testing and Evaluation (JNDE), 21(2), 23–32. Retrieved from https://jnde.isnt.in/index.php/JNDE/article/view/83

Abstract

TeraHertz (THz) radiation, f = 0.1 to 10 THz, falls between microwave and infrared in the electromagnetic spectrum. This spectral range harbours several key benefits that are relevant for applications in non-destructive evaluation (NDE), namely, many optically opaque materials are transparent for THz, including packaging material, it is non-ionising, and it is a spectral rich fingerprint region for substances found in pharmaceutical and explosive substances. Prominent THz technologies, such as THz time-domain spectroscopy and imaging, are described and their current uses in various industries (safety, aviation and automation, cultural heritage, and food) as an NDE tool are discussed. Despite its potential for NDE applications, one of the challenges faced by THz technologies is its relatively low spatial resolution compared to light technologies. Methods being developed for enhancing the resolution of THz tools such as near-field modalities, and the relevance this could have for non-destructive testing are outlined. In addition, the challenges that must be overcome before these near-field techniques can be incorporated into pre-existing THz NDE tools are highlighted.

References

  1. Naftaly M. Terahertz Metrology. Artech House; 2015. 64–65 p.
  2. Leitenstorfer A, Moskalenko AS, Kampfrath T, Kono J, Castro-Camus E, Peng K, et al. The 2023 terahertz science and technology roadmap. J Phys D Appl Phys. 2023 Jun 1;56(22).
  3. Lewis RA. A review of terahertz sources. J Phys D Appl Phys. 2014 Sep 17;47(37).
  4. Ellrich F, Bauer M, Schreiner N, Keil A, Pfeiffer T, Klier J, et al. Terahertz Quality Inspection for Automotive and Aviation Industries. J Infrared Millim Terahertz Waves. 2020 Apr 1;41(4):470–89.
  5. Van Exter M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Opt Lett. 1989;14(20).
  6. Bacon DR, Madéo J, Dani KM. Photoconductive emitters for pulsed terahertz generation. Journal of Optics. 2021 Jun 1;23(6).
  7. Withayachumnankul W, Naftaly M. Fundamentals of measurement in terahertz time-domain spectroscopy. J Infrared Millim Terahertz Waves. 2014;35(8):610–37.
  8. Freer S, Sui C, Hanham SM, Grover LM, Navarro-Cía M. Hybrid reflection retrieval method for terahertz dielectric imaging of human bone. Biomed Opt Express. 2021 Aug 1;12(8):4807.
  9. Fischer BM, Helm H, Jepsen PU. Chemical recognition with broadband THZ spectroscopy. In: Proceedings of the IEEE. Institute of Electrical and Electronics Engineers Inc.; 2007. p. 1592–604.
  10. Guerboukha H, Nallappan K, Skorobogatiy M. Toward real-time terahertz imaging. Adv Opt Photonics. 2018 Dec 31;10(4):843.
  11. Valušis G, Lisauskas A, Yuan H, Knap W, Roskos HG. Roadmap of terahertz imaging 2021. Sensors. 2021 Jun 2;21(12).
  12. Nsengiyumva W, Zhong S, Zheng L, Liang W, Wang B, Huang Y, et al. Sensing and Nondestructive Testing Applications of Terahertz Spectroscopy and Imaging Systems: State-of-the-Art and State-of-the-Practice. IEEE Trans Instrum Meas. 2023;72.
  13. Shen YC. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review. Int J Pharm. 2011 Sep 30;417(1–2):48–60.
  14. Ajito K, Nakamura M, Tajima T, Ueno Y. Terahertz Spectroscopy Methods and Instrumentation. In: Encyclopedia of Spectroscopy and Spectrometry. Elsevier; 2017. p. 432–8.
  15. Shen YC. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review. Int J Pharm. 2011 Sep 30;417(1–2):48–60.
  16. Bawuah P, Zeitler JA. Advances in terahertz time-domain spectroscopy of pharmaceutical solids: A review. TrAC - Trends in Analytical Chemistry. 2021 Jun 1;139.
  17. Patil MR, Ganorkar SB, Patil AS, Shirkhedkar AA. Terahertz Spectroscopy: Encoding the Discovery, Instrumentation, and Applications toward Pharmaceutical Prospectives. Crit Rev Anal Chem. 2022;52(2):343–55.
  18. Huang S, Deng H, Wei X, Zhang J. Progress in application of terahertz time-domain spectroscopy for pharmaceutical analyses. Front Bioeng Biotechnol. 2023;11:1219042.
  19. Bawuah P, Markl D, Farrell D, Evans M, Portieri A, Anderson A, et al. Terahertz-Based Porosity Measurement of Pharmaceutical Tablets: a Tutorial. J Infrared Millim Terahertz Waves. 2020 Apr 1;41(4):450–69.
  20. Lu X, Sun H, Chang T, Zhang J, Cui HL. Terahertz detection of porosity and porous microstructure in pharmaceutical tablets: A review. Int J Pharm. 2020 Dec 15;591.
  21. Naftaly M, Tikhomirov I, Hou P, Markl D. Measuring open porosity of porous materials using THz-TDS and an index-matching medium. Sensors. 2020 Jun 1;20(11).
  22. Fu X, Liu Y, Chen Q, Fu Y, Cui TJ. Applications of Terahertz Spectroscopy in the Detection and Recognition of Substances. Front Phys. 2022 May 12;10.
  23. Campbell MB, Heilweil EJ. Non-invasive detection of weapons of mass destruction using THz radiation. 2003; Available from: www.sparta.com
  24. Gao W, Degang X, Jianquan Y. Review of Explosive Detection Using Terahertz Spectroscopy Technique. In: 20I I International Conference on Electronics and Optoelectronics (ICEOE 201 I). 2011.
  25. Picot M, Ballacey H, Guillet JP, Cassar Q, Mounaix P. Terahertz Paint Thickness Measurements: from lab to automotive and aeronautics industry. 2017; Available from: http://www.ndt.net/?id=22188
  26. Chopard A, Sleiman JB, Cassar Q, Fauché P, Guillet JP, Mounaix P, et al. Contactless Terahertz Paint Thickness Measurements: specificity of aeronautics industry. 2019; Available from: http://www.ndt.net/?id=25028
  27. Hsu DK, Lee KS, Park JW, Woo YD, Im KH. NDE inspection of terahertz waves in wind turbine composites. International Journal of Precision Engineering and Manufacturing. 2012 Jul 1;13(7):1183–9.
  28. Ospald F, Zouaghi W, Beigang R, Matheis C, Jonuscheit J, Recur B, et al. Aeronautics composite material inspection with a terahertz time-domain spectroscopy system. 2014; Available from: http://www.dotnac-project.eu
  29. Zhong H, Karpowicz N, Xu J, Deng Y, Ussery W, Shur M, et al. Inspection of space shuttle insulation foam defects using a 0.2 THz Gunn diode oscillator. In: Conference Digest of the 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics. 2004. p. 753–4.
  30. Jackson JB, Bowen J, Walker G, Labaune J, Mourou G, Menu M, et al. A survey of terahertz applications in cultural heritage conservation science. IEEE Trans Terahertz Sci Technol. 2011 Sep;1(1):220–31.
  31. Jackson JB, Labaune J, Bailleul-Lesuer R, D’Alessandro L, Whyte A, Bowen JW, et al. Terahertz pulse imaging in archaeology. Frontiers of Optoelectronics. 2015 Mar 1;8(1):81–92.
  32. Cosentino A. Terahertz and Cultural Heritage Science: Examination of Art and Archaeology. Technologies. 2016 Feb 18;4(1):6.
  33. Krügener K, Ornik J, Schneider LM, Jäckel A, Koch-Dandolo CL, Castro-Camus E, et al. Terahertz inspection of buildings and architectural art. Applied Sciences. 2020 Aug 1;10(15).
  34. Alomainy A, Yang K, Imran MA, Yao XW, Abbasi QH. Nano-electromagnetic communication at terahertz and optical frequencies. Nano-Electromagnetic Communication at Terahertz and Optical Frequencies: Principles and Applications. Institution of Engineering and Technology; 2019. p. 1–206.
  35. Zidane F, Lanteri J, Marot J, Brochier L, Joachimowicz N, Roussel H, et al. Nondestructive control of fruit quality via millimeter waves and classification techniques: Investigations in the automated health monitoring of fruits. IEEE Antennas Propag Mag. 2020 Oct 1;62(5):43–54.
  36. Ren A, Zahid A, Fan D, Yang X, Imran MA, Alomainy A, et al. State-of-the-art in terahertz sensing for food and water security – A comprehensive review. Trends Food Sci Technol. 2019 Mar 1;85:241–51.
  37. Mitrofanov O, Brener I, Harel R, Wynn JD, Pfeiffer LN, West KW, et al. Terahertz near-field microscopy based on a collection mode detector. Appl Phys Lett. 2000 Nov 27;77(22):3496–8.
  38. Macfaden AJ, Reno JL, Brener I, Mitrofanov O. 3 μm aperture probes for near-field terahertz transmission microscopy. Appl Phys Lett. 2014 Jan 6;104(1).
  39. Mitrofanov O, Brener I, Luk TS, Reno JL. Photoconductive Terahertz Near-Field Detector with a Hybrid Nanoantenna Array Cavity. ACS Photonics. 2015 Dec 16;2(12):1763–8.
  40. Navarro-Cía M, Vitiello MS, Bledt CM, Melzer JE, Harrington JA, Mitrofanov O. Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 25-5 THz band. Opt Express. 2013 Oct 7;21(20):23748.
  41. Navarro-Cía M, Natrella M, Dominec F, Delagnes JC, Kužel P, Mounaix P, et al. Terahertz imaging of sub-wavelength particles with Zenneck surface waves. Appl Phys Lett. 2013 Nov 25;103(22).
  42. Khromova I, Navarro-Cía M, Brener I, Reno JL, Ponomarev A, Mitrofanov O. Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy. Appl Phys Lett. 2015;107(2).
  43. Mitrofanov O, Todorov Y, Gacemi D, Mottaghizadeh A, Sirtori C, Brener I, et al. Near-field spectroscopy and tuning of sub-surface modes in plasmonic terahertz resonators. Opt Express. 2018 Mar 19;26(6):7437.
  44. Li Z, Yan S, Zang Z, Geng G, Yang Z, Li J, et al. Single cell imaging with near-field terahertz scanning microscopy. Cell Prolif. 2020 Apr 1;53(4).
  45. Li Z, Zang Z, Wang J, Lu X, Yang Z, Wang H, et al. In Situ Cell Detection Using Terahertz Near-Field Microscopy. IEEE Trans Terahertz Sci Technol. 2022 Sep 1;12(5):457–63.
  46. Mitrofanov O, Lee M, Hsu JWP, Pfeiffer LN, West KW, Wynn JD, et al. Terahertz pulse propagation through small apertures. Appl Phys Lett. 2001 Aug 13;79(7):907–9.
  47. Aghamiri NA, Huth F, Huber AJ, Fali A, Hillenbrand R, Abate Y. Hyperspectral time-domain terahertz nano-imaging. Opt Express. 2019 Aug 19;27(17):24231.
  48. M. Wiecha M, Soltani A, G. Roskos H. Terahertz Nano-Imaging with s-SNOM. In: Terahertz Technology. IntechOpen; 2022.
  49. van der Valk NCJ, Planken PCM. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip. Appl Phys Lett. 2002 Aug 26;81(9):1558–60.
  50. Chen HT, Kersting R, Cho GC. Terahertz imaging with nanometer resolution. Appl Phys Lett. 2003 Oct 13;83(15):3009–11.
  51. Chen X, Liu X, Guo X, Chen S, Hu H, Nikulina E, et al. THz Near-Field Imaging of Extreme Subwavelength Metal Structures. ACS Photonics. 2020 Mar 18;7(3):687–94.
  52. Yang Z, Tang D, Hu J, Tang M, Zhang M, Cui HL, et al. Near-Field Nanoscopic Terahertz Imaging of Single Proteins. Small. 2021 Jan 1;17(3).
  53. Yang Z, Li D, Chen L, Qiu F, Yan S, Tang M, et al. Near-Field Terahertz Morphological Reconstruction Nanoscopy for Subsurface Imaging of Protein Layers. ACS Nano. 2023;18(14).
  54. Cocker TL, Jelic V, Hillenbrand R, Hegmann FA. Nanoscale terahertz scanning probe microscopy. Nat Photonics. 2021 Aug 1;15(8):558–69.
  55. True J, Xi C, Jessurun N, Ahi K, Asadizanjani N. Review of THz-based semiconductor assurance. Optical Engineering. 2021 Jun 3;60(06).
  56. Mittleman DM. Twenty years of terahertz imaging [Invited]. Opt Express [Internet]. 2018;26(8):9417. Available from: https://www.osapublishing.org/abstract.cfm?URI=oe-26-8-9417
  57. Stantchev RI, Yu X, Blu T, Pickwell-MacPherson E. Real-time terahertz imaging with a single-pixel detector. Nat Commun. 2020 May 21;11(1):2535.
  58. Penketh H, Ergoktas MS, Lawrence CR, Phillips DB, Cunningham JE, Hendry E, et al. Real-time millimeter wave holography with an arrayed detector. Opt Express. 2024 Feb 12;32(4):5783.