Vol. 21 No. 1 (2024): Journal of Non Destructive Testing and Evaluation (JNDE), March 2024
Research Papers

Perspective and Challenges of Resonant Ultrasound Spectroscopy for Additive Manufacturing

C. Chandraprakash
Bio

Published 10-03-2024

Keywords

  • NDT,
  • Ultrasonics,
  • Stiffness matrix,
  • Anisotropic,
  • Additive manufacturing

How to Cite

C. Chandraprakash. (2024). Perspective and Challenges of Resonant Ultrasound Spectroscopy for Additive Manufacturing . Journal of Non Destructive Testing and Evaluation (JNDE), 21(1), 62–68. Retrieved from https://jnde.isnt.in/index.php/JNDE/article/view/81

Abstract

Additively manufactured specimens are inspected by various non-destructive methods to detect inhomogeneities. To facilitate the inspection by ultrasonic methods, in this work, we emphasize the need to first identify the anisotropic elastic constants of the specimen. The experimental method and numerical procedure to estimate the constants by resonant ultrasound spectroscopy (RUS) are outlined. A simpler tensor-free method to estimate the resonant frequencies is derived. The challenges for a full-fledged use of RUS in additive manufacturing are presented.

References

  1. M. H. Sadd, Elasticity: Theory, Applications, and Numerics, Elsevier Science, 2020.
  2. J. R. Davis, Tensile Testing, ASM International, 2004
  3. C. Chandraprakash, A. Lakhtakia, N. R. Brown, W. Orfali and O. O. Awadelkarim, “Frequency-and temperature-dependent storage and loss moduli of microfibrous thin films of Parylene C,” Materials Letters, vol. 116, pp. 296--298, 2014.
  4. C. Chandraprakash, A. Lakhtakia, N. R. Brown, W. Orfali and O. O. Awadelkarim, “Temperature-dependent dynamic mechanical moduli of microfibrous columnar thin films of Parylene C,” Polymer Testing, vol. 53, (2016), vol. 53, pp. 89--97, 2016.
  5. G. E. Dieter, Mechanical Metallurgy, New York: McGraw Hill, 1961.
  6. W. Callister, Materials Science and Engineering -- An Introduction, John Wiley & Sons, 2007.
  7. A. Safaeinili, O. Lobkis and D. Chimenti, “Air-coupled ultrasonic estimation of viscoelastic stiffnesses in plates,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 43, no. 6, pp. 1171-1180, 1996.
  8. H. Zhang and D. E. Chimenti, “Air-Coupled Transmission Coefficient Reconstruction Using a 3-D Complex-Transducer-Point Voltage Model,” Journal of Nondestructive Evaluation, vol. 22, pp. 23-37, 2003.
  9. B. Hosten, D. A. Hutchins and D. W. Schindel, “Measurement of elastic constants in composite materials using air‐coupled ultrasonic bulk waves,” The Journal of the Acoustical Society of America, vol. 99, no. 4, pp. 2116-2123, 1996.
  10. M. Castaings and B. Hosten, “Air-coupled measurement of plane wave, ultrasonic plate transmission for characterising anisotropic, viscoelastic materials,” Ultrasonics, vol. 38, no. 1, pp. 781-786, 2000.
  11. J. Vishnuvardhan, C. V. Krishnamurthy and K. Balasubramaniam, “Genetic algorithm based reconstruction of the elastic moduli of orthotropic plates using an,” Smart Materials and Structures, vol. 16, no. 5, p. 1639, 2007.
  12. M. Sale, P. Rizzo and A. Marzani, “Semi-analytical formulation for the guided waves-based reconstruction of elastic moduli,” Mechanical Systems and Signal Processing, vol. 25, no. 6, pp. 2241-2256.
  13. A. Eremin, E. Glushkov, N. Glushkova and R. Lammering, “Evaluation of effective elastic properties of layered composite fiber-reinforced plastic plates by piezoelectrically induced guided waves and laser Doppler vibrometry,” Composite Structures, vol. 125, pp. 449-458, 2015.
  14. R. Awad, A. Abou-Aly, S. Isber and W. Malaeb, “Investigation of specific heat and thermopower properties of Tl-1223 substituted by sodium,” Solid State Communications, vol. 145, no. 4, pp. 201-206, 2008.
  15. A. Migliori and J. D. Maynard, “Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens,” Review of Scientific Instruments, vol. 76, no. 12, p. 121301, 2005.
  16. H. H. J. Demarest, “Cube‐Resonance Method to Determine the Elastic Constants of Solids,” The Journal of the Acoustical Society of America, vol. 49, no. 3B, pp. 768-775, 1971.
  17. J. J. Zemanek, “An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder,” The Journal of the Acoustical Society of America, vol. 51, no. 1B, pp. 265-283, 1972.
  18. A. Migliori, J. V. W. M. Sarrao, T. Bell, M. Lei, Z. Fisk and R. Leisure, “Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids,” Physica B: Condensed Matter, vol. 183, no. 1, pp. 1-24, 1993.
  19. J. D. Maynard, “The use of piezoelectric film and ultrasound resonance to determine the complete elastic tensor in one measurement,” The Journal of the Acoustical Society of America, vol. 91, no. 3, pp. 1754-1762, 1992.
  20. J. D. Maynard, “Resonance spectroscopy for solids with layers of different materials,” JASA Express Letters, vol. 2, no. 12, p. 124001, 2022.
  21. J. F. Gregg, B. E. Anderson and M. C. . Remillieux, “Electromagnetic excitation technique for nonlinear resonant ultrasound spectroscopy,” NDT & E International, vol. 109, no. 1, p. 102181, 2020.
  22. G. Li and J. R. Gladden, “High Temperature Resonant Ultrasound Spectroscopy: A Review,” International Journal of Spectroscopy, no. 206362, pp. 1-13, 2010.
  23. R. Adebisi, “High Temperature And Pressure Resonant Ultrasound,” PhD thesis, University of Mississippi, Mississippi, 2011.
  24. P. R. Gradl, S. E. Greene, C. Protz, B. Bullard, J. Buzzell, C. Garcia, J. Wood, R. Osborne, J. Hulka and K. G. Cooper, “Additive Manufacturing of Liquid Rocket Engine Combustion Devices: A Summary of Process Developments and Hot-Fire Testing Results,” Joint Propulsion Conference, 2018.
  25. C. Oztan and V. Coverstone, “Utilization of additive manufacturing in hybrid rocket technology: A review,” Acta astronautica, vol. 180, pp. 130--140, 2021.
  26. C. Choi, S. Bansal, N. Münzenrieder and S. Subramanian, “Fabricating and assembling acoustic metamaterials and phononic crystals,” Advanced Engineering Materials, vol. 23, no. 2, p. 2000988, 2021.
  27. Q. Fu, E. Saiz and A. P. Tomsia, “Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration,” Acta biomaterialia, vol. 7, no. 10, pp. 3547-3554, 2011.
  28. K. Huang, J. Yang, S. Dong, Q. Feng, X. Zhang, Y. Ding and J. Hu, “Anisotropy of graphene scaffolds assembled by three-dimensional printing,” Carbon, vol. 120, pp. 1-10, 2018.
  29. I. Ozer, E. Suvaci, B. Karademir, J. Missiaen, C. Carry and D. Bouvard, “Anisotropic sintering shrinkage in alumina ceramics containing oriented platelets,” Journal of the American Ceramic Society, vol. 89, no. 6, pp. 1972--1976, 2006.
  30. A. Zavaliangos, J. Missiaen and D. Bouvard, “Anisotropy in shrinkage during sintering,” Science of Sintering, vol. 38, no. 1, pp. 13-25, 2006.
  31. H. Shang, A. Mohanram, E. Olevsky and R. K. Bordia, “Evolution of anisotropy in hierarchical porous ceramics during sinter-forging,” Journal of the European Ceramic Society, vol. 36, no. 12, pp. 2937--2945, 2016.
  32. H. Tetik, K. Zhao, N. Shah and D. Lin, “3D freeze-printed cellulose-based aerogels: Obtaining truly 3D shapes, and functionalization with cross-linking and conductive additives,” Journal of Manufacturing Processes, vol. 68, pp. 445--453, 2021.
  33. M. Lasgorceix, E. Champion and T. Chartier, “Shaping by microstereolithography and sintering of macro--micro-porous silicon substituted hydroxyapatite,” Journal of the European Ceramic Society, vol. 36, no. 4, pp. 1091--1101, 2016.
  34. A. Nommeots-Nomm, P. D. Lee and J. R. Jones, “Direct ink writing of highly bioactive glasses,” Journal of the European Ceramic Society, vol. 38, no. 3, pp. 837--844, 2018.
  35. R. S. Lakes, Composites and metamaterials, Singapore: World Scientific, 2020.
  36. C. Mandache, “Overview of non-destructive evaluation techniques for metal-based additive manufacturing,” Materials Science and Technology, vol. 35, no. 9, pp. 1007-1015, 2019.
  37. S. R. Isaac, P. G. M. Fausto and M. Papaelias, “Review on additive manufacturing and non-destructive testing,” Journal of Manufacturing Systems, vol. 66, pp. 260-286, 2023.
  38. V. K. Nadimpalli, Y. Li and P. B. Nagy, “In-situ interfacial quality assessment of Ultrasonic Additive Manufacturing components using ultrasonic NDE,” NDT & E International, vol. 93, pp. 117-130, 2018.
  39. B. Dutton and W. Vesga, “Non-Destructive Evaluation for Additive Manufacturing,” in Precision Metal Additive Manufacturing, Boca Raton, CRC Press, 2020, pp. 195--236.
  40. F. . Balakirev, S. M. Ennaceur, R. J. Migliori, B. . Maiorov and A. . Migliori, “Resonant ultrasound spectroscopy: The essential toolbox,” Review of Scientific Instruments, vol. 90, no. 12, p. 121401, 2019.
  41. L. D. Landau, E. M. Lifshitz, A. M. Kosevich and L. P. Pitaevskii, Theory of elasticity: volume 7, Moscow: Elsevier, 1986.
  42. B. A. Auld, Acoustic fields and waves in solids, Рипол Классик, 1973.
  43. B. J. Zadler, R. Le, H. L. Jérôme, J. A. Scales and M. L. Smith, “Resonant Ultrasound Spectroscopy: theory and application,” Geophysical Journal International, vol. 156, no. 1, pp. 154-169, 2004
  44. D. Obilanade, C. Dordlofva and P. Törlind, “Surface roughness considerations in design for additive manufacturing - A literature review,” Proceedings of the Design Society, vol. 1, p. 2841–2850, 2021.
  45. C. Suh, Y. Jung and Y. Kim, “Effects of thickness and surface roughness on mechanical properties of aluminum sheets,” Journal of Mechanical Science Technology, vol. 24, p. 2091–2098, 2010.
  46. M. Qasmi and P. Delobelle, “Influence of the average roughness Rms on the precision of the Young's modulus and hardness determination using nanoindentation technique with a Berkovich indenter,” Surface and Coatings Techn ology, vol. 201, no. 3, pp. 1191-1199, 2006.
  47. J. Torres, A. Flores-Betancourt and R. P. Hermann, “RUScal: Software for the analysis of resonant ultrasound spectroscopy measurements,” The Journal of the Acoustical Society of America, vol. 151, no. 5, pp. 3547-3563, 2022.
  48. M. C. Remillieux, T. J. Ulrich, C. Payan, J. Rivière, C. R. Lake and P.-Y. Le Bas, “Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry,” Journal of Geophysical Research: Solid Earth, vol. 120, no. 7, p. 4898–4916, 2015.
  49. G. Liu and J. D. Maynard, “Measuring elastic constants of arbitrarily shaped samples using resonant ultrasound spectroscopy,” The Journal of the Acoustical Society of America, vol. 131, no. 3, pp. 2068-2078, 2012.
  50. H. Ogi, K. Sato and T. H. M. Asada, “Complete mode identification for resonance ultrasound spectroscopy,” The Journal of the Acoustical Society of America, vol. 112, no. 6, pp. 2553-2557, 2002.
  51. R. A. Adebisi, T. J. Lesthaeghe, M. R. Cherry, S. Sathish and P. A. Shade, “Development of a LASER-based resonant ultrasound spectroscopy and a framework for error propagation in the estimated elastic moduli,” in AIP Conference Proceedings, 2018.
  52. H. Ogi, H. Ledbetter, S. Kim and M. Hirao, “Contactless mode-selective resonance ultrasound spectroscopy: Electromagnetic acoustic resonance,” The Journal of the Acoustical Society of America, vol. 106, no. 2, pp. 660-665, 1999.
  53. R. G. Leisure and F. A. Willis, “Resonant ultrasound spectroscopy,” Journal of Physics: Condensed Matter, vol. 9, no. 28, p. 6001, 1997.
  54. B. Bales, L. Petzold, B. R. Goodlet, W. C. Lenthe and T. M. Pollock, “Bayesian inference of elastic properties with resonant ultrasound spectroscopy,” The Journal of the Acoustical Society of America, vol. 1413, no. 1, pp. 71-83, 2018.
  55. A. Datta, S. S. V. Kota and R. M. Kumar, “AI-Driven CFRP Structure Evaluation: Deep Learning-Powered Automated Air-Coupled Ultrasonic Detection of Defect,” Journal of Non-Destructive Testing and Evaluation, vol. 20, no. 4, p. 70–76, 2023.
  56. D. Kanzler, M. Selch and G. Olm, “AI for NDE 4.0 - How to get a Reliable and Trustworthy Result in Railway Based on the New Standards and Laws,” Journal of Non-Destructive Testing and Evaluation, vol. 20, no. 4, p. 42–50, 2023.
  57. G. Thulsiram and K. B. , “DPAI: In-Situ Process Intelligence using Data-Driven Simulation-Assisted-Physics Aware AI (DPAI) for Simulating Wave Dynamics,” Journal of Non-Destructive Testing and Evaluation , vol. 20, no. 4, p. 60–69, 2023.
  58. W. Yang, S. Sun, J. Hu, L. Tang, L. Qin, Z. Li and W. Luo, “Deep learning model as an inversion tool for resonant ultrasound spectroscopy of piezoelectric materials,” Applied Physics Letters , vol. 120, no. 18, p. 184101, 2022.