Vol. 20 No. 2 (2023): Journal of Non Destructive Testing and Evaluation (JNDE), June 2023
Research Papers

State of Artificial Intelligence (AI) in Thermographic Non-Destructive Evaluation (NDE) and its role in NDE 4.0

Published 11-06-2023

Keywords

  • -

How to Cite

Sai Kalyan Evani. (2023). State of Artificial Intelligence (AI) in Thermographic Non-Destructive Evaluation (NDE) and its role in NDE 4.0. Journal of Non-Destructive Testing and Evaluation (JNDE), 20(2), 63–68. Retrieved from https://jnde.isnt.in/index.php/JNDE/article/view/55

Abstract

This paper discusses the current trends and state of the art in using artificial intelligence (AI) for analyzing thermographic inspection data. Several articles aimed at automating the process of dispositioning parts/components using thermography were reviewed and presented. In addition, the challenges and path forward for achieving the deliverables of NDE 4.0 in the context of thermography were discussed and elaborated.

References

  1. Osman A, Duan Y, Kaftandjian V. Applied Artificial Intelligence in NDE. Handbook of Nondestructive Evaluation 4.0, Springer International Publishing; 2022, p. 443–76. https://doi.org/10.1007/978-3-030-73206-6_49.
  2. Vrana J, Singh R. NDE 4.0—A Design Thinking Perspective. J NondestrEval 2021;40. https://doi.org/10.1007/s10921-020-00735-9.
  3. Meyendorf NGH, Bond LJ, Curtis-Beard J, Heilmann S, Pal S, Schallert R, et al. NDE 4.0-NDE for the 21st Century-The internet of things and cyber physical systems will revolutionize
  4. Vrana J, Meyendorf N, Ida N, Singh R. Introduction to NDE 4.0. Handbook of Nondestructive Evaluation 4.0, Springer International Publishing; 2021, p. 1–28. https://doi.org/10.1007/978-3-030-48200-8_43-2.
  5. Ahmadi S, Lecompagnon J, Hirsch PD, Burgholzer P, Jung P, Caire G, et al. Laser excited super resolution thermal imaging for nondestructive inspection of internal defects. Sci Rep 2020;10. https://doi.org/10.1038/s41598-020-77979-y.
  6. Nobile R, Saponaro A, Pirinu A. The use of induction heating for thermographic inspection of composite laminates. IOP Conf Ser Mater Sci Eng 2023;1275:012015. https://doi.org/10.1088/1757-899x/1275/1/012015.
  7. Omar MA, Zhou Y. A quantitative review of three flash thermography processing routines. Infrared Phys Technol 2008;51:300–6. https://doi.org/10.1016/j.infrared.2007.09.006.
  8. Yang J, Wang W, Lin G, Li Q, Sun Y, Sun Y. Infrared Thermal Imaging-Based Crack Detection Using Deep Learning. IEEE Access 2019;7:182060–77. https://doi.org/10.1109/ACCESS.2019.2958264.
  9. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 2015. https://arxiv.org/abs/1506.01497
  10. Jang K, Kim N, An YK. Deep learning–based autonomous concrete crack evaluation through hybrid image scanning. Struct Health Monit2019;18:1722–37. https://doi.org/10.1177/1475921718821719.
  11. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going Deeper with Convolutions 2014. https://arxiv.org/abs/1409.4842
  12. Jaeger BE, Schmid S, Grosse CU, Gögelein A, Elischberger F. Infrared Thermal Imaging-Based Turbine Blade Crack Classification Using Deep Learning. J NondestrEval 2022;41. https://doi.org/10.1007/s10921-022-00907-9.
  13. Liu F, Liu J, Wang L. Deep learning and infrared thermography for asphalt pavement crack severity classification. AutomConstr 2022;140. https://doi.org/10.1016/j.autcon.2022.104383.
  14. Buongiorno D, Prunella M, Grossi S, Hussain SM, Rennola A, Longo N, et al. Inline Defective Laser Weld Identification by Processing Thermal Image Sequences with Machine and Deep Learning Techniques. Applied Sciences (Switzerland) 2022;12. https://doi.org/10.3390/app12136455.
  15. Ma D, Liu A, Fan Z, Wu R, Gao J, Zhao H, et al. Gas Leakage Recognition Based on Wide-Band Infrared Imaging with the Auxiliary Excitation Method and Machine Learning Model. ACS Chemical Health and Safety 2022;29:455–66. https://doi.org/10.1021/acs.chas.2c00045.
  16. Wang J, Ji J, Ravikumar AP, Savarese S, Brandt AR. VideoGasNet: Deep learning for natural gas methane leak classification using an infrared camera. Energy 2022;238. https://doi.org/10.1016/j.energy.2021.121516.
  17. Ren Z, Zhao J, Wang C, Ma X, Lou Y, Wang P. Research on Key Technologies of Super-Resolution Reconstruction of Medium and Long Wave Maritime Infrared Image. Applied Sciences (Switzerland) 2022;12. https://doi.org/10.3390/app122110871.
  18. Wei Z, Osman A, Valeske B, Maldague X. Pulsed Thermography Dataset for Training Deep Learning Models. Applied Sciences (Switzerland) 2023;13. https://doi.org/10.3390/app13052901.
  19. Ren Z, Zhao J, Wang C, Ma X, Lou Y, Wang P. Research on Key Technologies of Super-Resolution Reconstruction of Medium and Long Wave Maritime Infrared Image. Applied Sciences (Switzerland) 2022;12. https://doi.org/10.3390/app122110871.
  20. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation 2015. https://arxiv.org/abs/1505.04597
  21. Fang Q, Ibarra‐castanedo C, Maldague X. Automatic defects segmentation and identification by deep learning algorithm with pulsed thermography: Synthetic and experimental data. Big Data and Cognitive Computing 2021;5:1–21. https://doi.org/10.3390/BDCC5010009.
  22. Lim WH, Sfarra S, Yao Y. A Physics-Informed Neural Network Method for Defect Identification in Polymer Composites Based on Pulsed Thermography. Engineering Proceedings 2021;8. https://doi.org/10.3390/engproc2021008014.