Published 11-06-2023
Keywords
- Emissivity,
- Temperature monitoring,
- Infrared thermography,
- Correction approaches
How to Cite
Copyright (c) 2023 Journal of Non-Destructive Testing and Evaluation (JNDE)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
Accurate estimation of the spatio-temporal temperature evolution of material aids in understanding the thermal characteristics of materials and indentifying anomalies (if any). Infrared thermography is a popularly used technique for temperature measurement, which is non-contact in nature. The efficiency of this technique for estimating temperature depends directly on the emissivity, which is a material surface property. The lack of information on emissivity or variability in emissivity is likely to affect the temperature estimation. This paper discusses the importance of emissivity in temperature estimation followed by the illustration of various factors that may affect temperature estimation using infrared thermography. In addition to that, various temperature correction approaches related to unknown and variable emissivity has also been discussed.
References
- B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review,” Infrared Physics and Technology, vol. 55, no. 4. pp. 221–235, Jul. 2012. doi: 10.1016/j.infrared.2012.03.007.
- D. Höfflin, C. Sauer, A. Schiffler, and J. Hartmann, “Process Monitoring Using Synchronized Path Infrared Thermography in PBF-LB/M,” Sensors, vol. 22, no. 16, Aug. 2022, doi: 10.3390/s22165943.
- S. Bagavathiappan, B. B. Lahiri, T. Saravanan, J. Philip, and T. Jayakumar, “Infrared thermography for condition monitoring - A review,” Infrared Physics and Technology, vol. 60. pp. 35–55, 2013. doi: 10.1016/j.infrared.2013.03.006.
- C. Meola, G. M. Carlomagno, and L. Giorleo, “The use of infrared thermography for materials characterization,” J Mater Process Technol, vol. 155–156, no. 1–3, pp. 1132–1137, Nov. 2004, doi: 10.1016/j.jmatprotec.2004.04.268.
- N. Ludwig, D. Formenti, M. Gargano, and G. Alberti, “Skin temperature evaluation by infrared thermography: Comparison of image analysis methods,” Infrared Phys Technol, vol. 62, pp. 1–6, 2014, doi: 10.1016/j.infrared.2013.09.011.
- A. Irace, “Infrared Thermography application to functional and failure analysis of electron devices and circuits,” Microelectronics Reliability, vol. 52, no. 9–10, pp. 2019–2023, Sep. 2012, doi: 10.1016/j.microrel.2012.06.106.
- S. Doshvarpassand, C. Wu, and X. Wang, “An overview of corrosion defect characterization using active infrared thermography,” Infrared Physics and Technology, vol. 96. Elsevier B.V., pp. 366–389, Jan. 01, 2019. doi: 10.1016/j.infrared.2018.12.006.
- P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Review of Scientific Instruments, vol. 71, no. 8. American Institute of Physics Inc., pp. 2959–2978, 2000. doi: 10.1063/1.1305516.
- X. Maldague, Theory and Practice of infrared technolgy for non destuctive testing, First. New york: John Wiley and Sons, 2001.
- R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors (Switzerland), vol. 14, no. 7. MDPI AG, pp. 12305–12348, Jul. 10, 2014. doi: 10.3390/s140712305.
- B. Milovanović and I. B. Pečur, “Review of Active IR Thermography for Detection and Characterization of Defects in Reinforced Concrete,” J Imaging, vol. 2, no. 2, p. 11, 2016, doi: 10.3390/jimaging2020011.
- J. Wu, B. Wu, Z. Wang, and X. Wu, “Strong nonreciprocal thermal radiation in Weyl semimetal-dielectric multilayer structure,” International Journal of Thermal Sciences, vol. 181, Nov. 2022, doi: 10.1016/j.ijthermalsci.2022.107788.
- Y. Cengel, Heat transfer. A practical approach, 2nd ed. New york: Mcgraw-Hill, 2003. doi: 10.1016/S0074-6142(08)60676-2.
- R. P. Madding, “Emissivity measurement and temperature correction accuracy considerations,” in Thermosense XXI, SPIE, Mar. 1999, pp. 393–401. doi: 10.1117/12.342307.
- N. P. Avdelidis and A. Moropoulou, “Emissivity considerations in building thermography,” Energy Build, vol. 35, pp. 663–667, 2002, doi: doi.org/10.1016/S0378-7788(02)00210-4.
- L. Zhou, R. Dickinson, P. Dirmeyer, H. Chen, Y. Dai, and Y. Tian, “Asymmetric response of maximum and minimum temperatures to soil emissivity change over the Northern African Sahel in a GCM,” Geophys Res Lett, vol. 35, no. 5, Mar. 2008, doi: 10.1029/2007GL032953.
- M. Mori, L. Novak, and M. Sekavčnik, “Measurements on rotating blades using IR thermography,” Exp Therm Fluid Sci, vol. 32, no. 2, pp. 387–396, Nov. 2007, doi: 10.1016/j.expthermflusci.2007.05.002.
- R. Yu, J. Han, L. Bai, and Z. Zhao, “Identification of butt welded joint penetration based on infrared thermal imaging,” Journal of Materials Research and Technology, vol. 12, pp. 1486–1495, 2021, doi: 10.1016/j.jmrt.2021.03.075.
- K. Zhang et al., “An iterative algorithm to improve infrared thermographic systems’ accuracy in temperature field measurement of aluminum alloys,” Measurement (Lond), vol. 210, Mar. 2023, doi: 10.1016/j.measurement.2023.112547.
- J. Liu, Y. hui Huang, Y. Ci, J. xiong Fang, F. Yang, and N. David, “Inner wall temperature distribution measurement of the ladle based on cavity effective emissivity correction,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-05533-z.
- T. Lafargue-Tallet et al., “Active thermo-reflectometry for absolute temperature measurement by infrared thermography on specular materials,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-11616-8.
- S. Taylor, J. B. Wright, E. C. Forrest, B. Jared, J. Koepke, and J. Beaman, “Investigating relationship between surface topography and emissivity of metallic additively manufactured parts,” International Communications in Heat and Mass Transfer, vol. 115, Jun. 2020, doi: 10.1016/j.icheatmasstransfer.2020.104614.
- P. J. Lapray, X. Wang, J. B. Thomas, and P. Gouton, “Multispectral filter arrays: Recent advances and practical implementation,” Sensors (Switzerland), vol. 14, no. 11, pp. 21626–21659, Nov. 2014, doi: 10.3390/s141121626.
- Z. Wang, J. Dai, S. Yang, and T. Hu, “Development of a multi-spectral thermal imager for measurement of the laser-induced damage temperature field,” Infrared Phys Technol,
- vol. 123, Jun. 2022, doi: 10.1016/j.infrared.2022.104158.
- N K Del Grande, “Method for identifying anomalous terrestrial heat flows,” US 4005289, 1977
- A. Ianiro and G. Cardone, “Measurement of surface temperature and emissivity with stereo dual-wavelength IR thermography,” in Journal of Modern Optics, Oct. 2010, pp. 1708–1715. doi: 10.1080/09500340.2010.514068.
- L. Savino et al., “Free emissivity temperature investigations by dual color applied physics methodology in the mid- and long-infrared ranges,” International Journal of Thermal Sciences, vol. 117, pp. 328–341, Jul. 2017, doi: 10.1016/j.ijthermalsci.2017.03.028.
- K. Grujić, “A Review of Thermal Spectral Imaging Methods for Monitoring High-Temperature Molten Material Streams,” Sensors, vol. 23, no. 3. MDPI, Feb. 01, 2023. doi: 10.3390/s23031130.
- T. Sentenac, R. Gilblas, D. Hernandez, and Y. Le Maoult, “Bi-color near infrared thermoreflectometry: A method for true temperature field measurement,” Review of Scientific Instruments, vol. 83, no. 12, Dec. 2012, doi: 10.1063/1.4769802.
- A. Hijazi, Sachidanandan S, Singh R, and Madhavan V, “A calibrated dual-wavelength infrared thermometry approach with non-greybody compensation for machining temperature measurements,” Meas Sci Technol, vol. 22, no. 2, 2011.
- P. J. Riggan and J. W. Hoffman, “Field applications of a multi-spectral, thermal imaging radiometer,” IEEE Aerospace Applications Conference Proceedings, vol. 3, pp. 443–449, 1999, doi: 10.1109/aero.1999.789804.
- C. Rodiet, B. Rémy, A. Degiovanni, and F. Demeurie, “Optimisation of wavelengths selection used for the multi-spectral temperature measurement by ordinary least squares method of surfaces exhibiting non-uniform emissivity,” Quant Infrared Thermogr J, vol. 10, no. 2, pp. 222–236, 2013, doi: 10.1080/17686733.2013.812816.
- N. Vetrekar et al., “Collaborative representation of convolutional neural network features to detect artificial ripening of banana using multispectral imaging,” J Food Process Preserv, vol. 46, no. 10, Oct. 2022, doi: 10.1111/jfpp.16882.