Vol. 20 No. 1 (2023): Journal of Non Destructive Testing and Evaluation (JNDE), March 2023
Research Papers

Pulsed Thermal NDT of Material Discontinuities by Using the Concept of Equivalent Effusivity/Diffusivity Variations

A. O. Siddiqui
Advanced Systems Laboratory, Kanchanbagh P.O., Hyderabad 500058
Y.L.V.D. Prasad
Advanced Systems Laboratory, Kanchanbagh P.O., Hyderabad 500058
V.P. Vavilov
National Research Tomsk Polytechnic University 634050 Tomsk, Lenin Av., 30, Russia
D. Yu. Kladov
National Research Tomsk Polytechnic University 634050 Tomsk, Lenin Av., 30, Russia

Published 12-03-2023

Keywords

  • Nondestructive testing,
  • Infrared thermography,
  • Defect,
  • Diffusivity,
  • Effusivity

How to Cite

Siddiqui, A. O. ., Prasad, Y., Vavilov, V. ., & Kladov, D. Y. . (2023). Pulsed Thermal NDT of Material Discontinuities by Using the Concept of Equivalent Effusivity/Diffusivity Variations. Journal of Non-Destructive Testing and Evaluation (JNDE), 20(1), 29–37. Retrieved from https://jnde.isnt.in/index.php/JNDE/article/view/31

Abstract

Subsurface material discontinuities lead to local variations of apparent thermal effusivity and diffusivity. The analysis of equivalence between such variations and defect parameters is useful from both theoretical and practical points of view. Classical heat conduction solutions contain effusivity/diffusivity as important parameters, which can be used for defect characterization.  Also, conversion of temperature images into maps of thermal propertiesmay enhance defect visibility, for example, by transiting from the temperature domain into the time domain, as it appears in the case of diffusivity measurement. A 60J impact damage in carbon fiber reinforced polymer is characterized by effusivity/diffusivity variation from 20 to 40 %.

References

  1. Vavilov V., Burleigh D. (2020), “Infrared thermography and thermal nondestructive testing”, Springer Nature Switzerland, DOI: 10.1007/978-3-030-48002-8.
  2. Bing W., Shuncong Z., Tung-Lik L., Fancey K.S., JiaweiMi (2020), “Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review”, Adv. in Mech. Eng., 12 (4), pp. 1-28.
  3. Chulkov А.О., Sommier A., Pradere C., Vavilov V.P., Siddiqui A.O., Prasad Y.L.V.D. (2021), “Analyzing efficiency of optical and THz infrared thermography in nondestructive testing of GFRPs by using the Tanimoto criterion”, NDT & E Intern., vol. 117, 102383. DOI: 10.1016/j.ndteint.2020.102383.
  4. Mulaveesala R., Rani A., Kher V., Mishra P., Kaur (2021), “J. Infrared non-destructive testing and evaluation for inspection of carbon fiber reinforced polymer materials”, Proc. Thermosense: Thermal Infrared Applications XLIII conf., vol. 11743, 117430Q, DOI: 10.1117/12.2593390.
  5. Dua G., Arora V., Mulaveesala R. (2018), “An aperiodic digitized frequency modulated thermal wave imaging for testing and evaluation of carbon fiber reinforced polymer materials”, JNDE, 16 (12), pp. 30-32.
  6. Vavilov V., Chulkov A., Smotrov A., Smotrova S., Moskovchenko A. (2019), “Characterizing impact damage in GFRP/CFRP composites by determining thermal effusivity/diffusivity”, Measurement Science and Technology, vol. 30, 034003, DOI: 10.1088/1361-6501/ab018e.
  7. Vavilov V.P., Chulkov A.O., Smotrova S.A., Smotrov A.V., Scherbakov V.N., Storozhenko V.A. (2022), “Infrared thermographic analysis of thermal property variations in composites subjected to impact damage, thermal cycling and moisture saturation”,. Composite Structures, vol. 296, 115927, DOI: 10.1016/j.compstruct.2022.115927
  8. Zalameda J.N., Winfree W.P. (2004), “Improved sampling of thermal transients using Focal Plane Array infrared imagers”, Proc. Thermosense: Thermal Infrared Applications XXVI conf., vol. 5405, pp. 374-381.
  9. Winfree W.P., Zalameda J.N. (2002), “Single sided thermal diffusivity imaging in composites with a shuttered thermographic inspection system”, Proc. Thermosense: Thermal Infrared Applications XXIV conf., vol. 4710, pp. 536-544.
  10. Parker W.J., Jenkins R.J., Butler C.P., Abbot G.L. (1961), “Flash method of determining thermal diffusivity, heat capacity and thermal conductivity”, J. of Appl. Phys., vol. 32, pp.1679-1684.
  11. Vavilov V.P., Shirayev V.V., Kuimova M.V. (2018), “Time- and phase-domain thermal tomography of composites”, Photonics, 5 (4), pp. 31-42. DOI: 10.3390/photonics5040031.