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Abstract 
 In this study, the successful experiments with air-coupled ultrasonic testing (ACUT) conducted on a  300 mm 

x 300 mm CFRP laminate, constructed from unidirectional Carbon Fibres, has been designed to simulate 

various types of damage during manufacturing, were presented as part of the experimental data. It was noted 

that the ACUT results exhibited strong correlations with the ground truth. To improve automated defect 

detection, a two-stage process was introduced. In the initial stage, C-Scan data acquired from the ACUT 

system was utilized. This data underwent meticulous analysis by a Convolutional Neural Network (CNN) 

image classifier, which categorized the images into two primary classes: defects and non-defects. 

Subsequently, defect instances underwent in-depth processing using Mask R-CNN, a technique that generated 

bounding boxes and segmentation masks for each defect zone within the images. The entire process was 

executed utilizing TensorFlow. The ultimate objective of this approach was to provide inspectors with the 

requisite tools to promptly and accurately discern and assess defects in composite materials, with the potential 

to substantially enhance the efficiency and precision of quality control processes in composite structures. 
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1    INTRODUCTION 

Composites, both in a broader context and with a 

specific focus on Carbon Fibre Reinforced Polymers 

(CFRP), have become critical needs across a range 

of applications, notably in aerospace and automotive 

industries. This popularity is attributable to their 

outstanding mechanical attributes, including their 

lightweight nature, high specific strength, and 

suitability for tailored designs [1-3]. Ultrasonic 

Testing (UT), Radiographic Testing (RT), 

Thermographic Testing, Shearography, and Acoustic 

Emission (AE) Testing are well-established non-

destructive inspection methods for composite 

structures. UT employs high-frequency sound waves 

for defect detection and characterization [3-4], RT 

uses X-rays or gamma rays to reveal internal 

anomalies [5-6], Thermographic Testing relies on 

thermal imaging to identify defects [7-8], 

Shearography measures surface deformation under 

stress [9-10], and AE Testing monitors acoustic 

signals during material deformation or failure [11-

12]. The choice of method depends on factors such 

as material properties, defect types, sensitivity 

requirements, and resource availability. Often, a 

combination of these techniques is employed to 

ensure a comprehensive assessment of composite 

structural integrity. It is important to note that these 

aforementioned NDT methods represent only a 

subset of the conventional techniques employed for 

the assessment of composite structures. The 

selection of an appropriate method depends on 

several factors, including the composite material 

type, the nature of expected defects, required 

sensitivity, and the availability of necessary 

resources and equipment. Often, a combination of 

these methods is employed to ensure a 

comprehensive evaluation of the structural integrity 

of the composite structure. The ongoing transition to 

Industry 4.0 presents new opportunities for 

advancing inspection procedures through artificial 

intelligence (AI)-based machine learning and deep 

learning algorithms, enabling sophisticated data 

analysis and autonomous systems.  Several research 

groups have used deep learning (DL) algorithms to 

detect defects in different structures and materials, 

including A-scan ultrasonic signals, B-scan images, 

and phased-array ultrasonic images. It is noteworthy 
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that, DL models outperform the traditional methods 

and even human operators in some cases. Different 

DL architectures such as Convolutional neural 

networks (CNNs), Gated recurrent unit (GRU), 

Scalable and Efficient Object Detection 

(EfficientDet), and Visual Geometry Group(VGG-

16) [21],  have been applied to process ultrasonic 

data, and transfer learning has proven effective in 

enhancing model performance. These studies 

collectively suggest that the automation of repetitive 

NDE tasks is achievable in the medium term, with 

DL methodologies providing higher accuracy and 

efficiency than classical approaches. 

Guo et al. [13] introduced a DL model that combines 

GRU and CNN architectures to process ultrasonic 

signals, achieving superior accuracy compared to 

other networks. Yan et al. [14] applied a CNN-

Support Vector Machine(SVM) framework for 

pipeline girth cracking identification using Electro 

Magnetic Acoustic Transducer (EMAT) signals, 

outperforming traditional feature extraction methods. 

DL has also been employed in the context of 

ultrasonic B-scans for defect detection. Yuan et al. 

[15] utilized a Feed-forward neural networks 

(FCNN) framework for train wheel defect 

identification, achieving a 92% recognition rate. 

Medak et al. [16] proposed an EfficientDet network 

for automated defect detection from ultrasonic B-

scan images, outperforming other DL models. 

Virkkunen et al. [17] compared a CNN model's 

performance to human operators for phased-array 

ultrasonic B-scan flaw detection, demonstrating the 

CNN's superiority. Slonski et al. [18] explored the 

automation of flaw detection in concrete through 

ultrasonic tomography images using a VGG-16 

network, reporting a validation accuracy of 97%. 

Additionally, Ye et al. [19] compiled a 

comprehensive dataset of ultrasonic wavefield 

images and benchmarked various well-known DL 

models, revealing DenseNet as the most accurate. 

These examples collectively demonstrate that DL 

methodologies have surpassed classical methods and 

human operators in NDE tasks, offering potential for 

automating repetitive inspections in the near future. 

A. Croxford et al. [20], introduces a framework of 

automation levels for various non-destructive 

evaluation (NDE) modalities, with a primary 

emphasis on ultrasound inspection. The proposed 

levels, depicted in Fig.1, span from traditional NDE 

procedures where human operators are fully 

responsible to a future scenario of complete NDE 

automation without human intervention. Levels 3 

and 4 represent fully automated NDE, feeding 

directly into structural integrity decision-making, 

enabling data-driven approaches for decisions like 

acceptance, rejection, maintenance, repair, and 

remaining useful life estimation. These proposed 

levels align with the levels recently published by the 

European Union Aviation Safety Agency (EASA) 

and are extended here to address a broader range of 

ultrasonic NDE applications. The transition to higher 

automation levels is greatly facilitated by the 

adoption of Deep Learning (DL) methods, enabling 

more sophisticated automation in handling complex 

scenarios with minimal operator involvement and the 

potential for human-free decision-making. However, 

the need for substantial labelled datasets presents a 

challenge, which can be mitigated by employing 

rudimentary DL systems to coarsely label data.  

 

Fig.1: Schematic representation of the proposed level of 

automation by A. Croxford et al.[20] 

At CSIR-NAL, the pursuit of automated ultrasonic 

inspection is a primary objective. To initiate this 

automation, as suggested by A. Croxford et al., the 

air-coupled ultrasonic testing (ACUT) experiments 

were conducted on a 300 mm x 300 mm CFRP 

laminate to generate database. In order to improve 

the process of automated defect detection, a two-

stage strategy was implemented. In the first stage, a 

Convolutional Neural Network (CNN) image 

classifier use to categorize images into two primary 

classes: defects and non-defects. Subsequently, 

further refinement was achieved by subjecting defect 

instances to comprehensive processing using Mask 
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R-CNN, a technique for generating bounding boxes 

and segmentation masks delineating each defect 

zone within the images. The entire workflow was 

carried out with the aid of TensorFlow-2.20 and 

NVIDIA CUDA Cores:10752. The overarching aim 

of this methodology was to furnish inspectors with 

the requisite tools for the rapid and precise 

identification and evaluation of defects present in 

composite structure.  

The organization of the paper is as follows: sec.2 

describes the experimental setup and specimen under 

test; sec.3 describes model development. In sec.4, 

discuss results, by conclusion in sec.5. 

2 EXPERIMENTAL SETUP & SPECIMEN 

UNDER TEST 

Air-coupled ultrasonic testing has demonstrated its 

high reliability as a technique for inspecting defects 

in contemporary multilayer composites, 

encompassing assessments of delamination, air 

inclusions, bonding quality, and impact-induced 

damage. 

The Air-coupled system developed by The Ultran 

Group represents a precise system for damage 

detection in a wide range of materials across various 

industries illustrated in Fig.2. It includes a fully 

configured ultrasonic analysis system suitable for 

both internal and surface imaging, enabling the 

investigation of defects, heterogeneity, delamination, 

porosity, velocity/density, thickness, and Time of 

Flight. The system supports ULTRAN's proprietary 

scanning package for 2D C-Scan imaging, 

SecondWaveTM Studio software for A-scan point 

measurements, Line-Scan, and FFT analysis, as well 

as SecondWaveTM Research Studio software for 

post-processing and statistical evaluation of C-Scan 

images.  

 

(a) 

 

(b) 

Fig.2: (a) Air-Coupled ultrasonic system, comprising a 

controller, a scanning area, and holders for transducers 

(b) Picture depicting the system at CSIR-NAL  

A 300mm x 300mm laminate, fabricated from 

unidirectional Carbon Fibres, has been designed to 

simulate various types of damages that can occur in 

composite laminates during manufacturing, as 

illustrated in Fig.3a. The figure indicates specific 

insert damages: “1” represents a release film with a 

20x20 mm insert, “2” signifies a 20x20 mm UD 

prepreg backup film insert, “3” denotes a 20x20 mm 

UD prepreg backup paper insert, “4” corresponds to 

a 20x20 mm tool tech insert, and “5” indicates a 

50x30 mm delamination area within the laminate. 

The ACUT system combines two point-focused 

piezoelectric transducers, each with a 38 mm focal 

length and a valid inspection region with a 13 mm 

radius. This transducer arrangement facilitates the 

transmission of bulk waves within CFRP specimens. 

The ultrasonic signals, generated at a frequency of 

140 kHz, are transmitted with a controlled 

transitional velocity of 10 mm/s in both the 

horizontal (Vx) and vertical (Vy) directions. The 

scanning process utilizes a step size of 0.1 mm, 

ensuring precise coverage of the specimen. 

Moreover, the system features a gain setting of 70 

dB, resulting in enhanced signal sensitivity and 

detection capabilities. Raw C-Scan image obtained 

from the system is illustrated in Fig.3b. 
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(a) 

 

(b) 

Fig. 3: (a) Laminate Design and Damage Simulation: A 

300 mm x 300 mm unidirectional CFRP laminate 

designed to simulate various manufacturing-induced 

damages within composite laminates (b) Unprocessed C-

Scan image rotated 90° Anti-Clockwise relative to Fig. 3a 

2.1    Data Set Generation 

In accordance with the procedures detailed in the 

experimental setup section, we conducted data 

acquisition by systematically varying parameters 

including pulse repetition frequency (PRF), 

transmitter voltage (V), Low-Pass Filter (LPF) and 

High-Pass Filter (HPF) settings, and adjusting the 

receiver gain of the ACUT system. This process 

yielded a total of 63 images. Subsequently, we 

employed data augmentation techniques, such as 

image rotation at various angles, flipping, scaling, 

cropping, brightness enhancement, contrast 

adjustment, and the adding white noise to the 

images. These augmentation methods allowed us to 

expand our dataset to a total of 321 images for 

further analysis and experimentation. 

3    MODEL DEVELOPMENT 

As outlined in sec. 1, our objective was to develop 

an algorithm for shape detection and damage size 

estimation within the test specimen. To achieve this, 

we adopted a two-stage approach, as illustrated in 

Fig.4. In the first stage, as indicated in the flowchart, 

we performed CNN based classification on the C-

scan image of the test panel. Subsequently, at stage-

2, in cases where damage was detected, we utilized 

Mask-RCNN on the C-scan images to identify 

arbitrary shapes and calculate the extent of the 

damage.  

The raw C-scan image, initially sized at [1000, 600], 

was subjected to de-noising (optional) and evaluated 

by a CNN-based classifier to ascertain the presence 

or absence of damage in the input image. We opted 

for a CNN-based Classifier due to its proven ability 

to accurately recognize damage in images, its 

capacity to autonomously learn and extract intricate 

features, and map them to their respective classes, 

ensuring precise image classification. Furthermore, 

CNNs exhibit adaptability to diverse damage sizes, 

scales, and orientations. 

 

Fig.4: Flowchart representation of the Model: 

Classifying C-scan images in the first stage and, when 

damage is detected, using Mask R-CNN to identify 

shapes and measure the damage's extent in the second 

stage 
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After damage has been classified, the input image is 

first passed through a backbone network, which is 

typically a deep convolutional neural network 

(CNN) like ResNet-101 and Feature Pyramid 

Network (FPN) architecture. The backbone network 

extracts a set of feature maps at different scales, 

representing features from low-level edges and 

textures to high-level object and context information 

as illustrated in Fig.5. 

By applying ResNet-101 to our data set, the method 

gives Pool size as 7, Maximum pool size as 16, 

Mask shape [28, 28], ROI positive ratio 0.33. The 

weights of each feature have been calculated based 

on minimum values, maximum values, and standard 

deviation of the objects. 

In the image processing pipeline, the first step 

involves calculating the number of pixels and their 

intensity in the input image, using a utility function 

that extracts information from a NumPy array to 

obtain details about bounding boxes, including 

shapes, minimum, and maximum values. The kernel 

function used for processing is a [3x3] filter, and the 

image is compressed to a 0-255 scale. 

 For segmentation, the input image is passed through 

a Region Proposal Network (RPN), it plays a critical 

role in identifying potential defect recognition, 

improving the overall efficiency and accuracy of the 

Mask R-CNN model in image segmentation tasks. It 

achieves this by sliding set of anchor boxes of 

different scales and aspect ratios across the feature 

map produced by a backbone Network. The RPN 

then predicts the likelihood of each anchor box 

containing an object and refines their positions with 

multiple bounding boxes regression.  

After defining the regions, the output of the RPN and 

feature maps from RES-NET101 and Feature 

Pyramid Network (FPN) will be the input of the is 

RoI Alignment or RoI Pooling techniques which is a 

Pooling layer, where the size of the proposed regions 

can be determined.  

Features obtained from RoI alignment are set for the 

model and passed through Fully Connected Layers 

(FCL) and Fully Connected Network (FCN). This 

step aids in visualizing how to design and generate 

masks over an image.  

The model is pre-trained on the COCO dataset [21], 

which consists of over 330,000 images, each 

annotated with 80 object categories and 5 captions 

describing the scene. Weights for each feature are 

calculated based on minimum values, maximum 

values, and the standard deviation of objects. 

We have presented one of the sample C-Scan image 

of our data set from stage -1 to stage-2 in Sec.4 

4    RESULTS 

In this study, we present two key outcomes. First, we 

describe the outcome of the classification process 

conducted using a CNN-Classifier implemented 

through Keras illustrated in Fig.6a. Subsequently, 

performance of the Mask R-CNN algorithm 

illustrated in Fig. 6b, which was initially trained to 

detect various defects and shapes based on specific 

detection requirements. The model demonstrated 

satisfactory performance across most detection tasks. 

 

Fig. 5: Mask R-CNN architecture for defect zone bounding boxes and segmentation masks 
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Pre-trained weights are available for the Mask R-

CNN model and can be utilized for defect detection, 

with the option to update these weights during 

subsequent model training.  

 

(a) 

 

(b) 

Fig.6: (a) CNN Image classifier: Whether the image is 

damage or not (b) Mask R-CNN: Creates a mask over 

the damage area 

To refine the model's ability to identify objects and 

shapes, we conducted further training using our 

dataset that included various shapes. The model 

underwent training and validation testing, achieving 

a mean Average Precision (mAP) of 89% after 1000 

epochs. The validation loss function plateaued at 

0.004, while accuracy consistently remained around 

0.988 for our dataset. These findings demonstrate the 

model's capacity to effectively detect both small, 

clustered objects within a single image and larger or 

medium-sized objects in an image. 

5    CONCLUSION 

Ultrasonic testing (UT) is one of the most widely 

used non-destructive inspection methods for 

inspection of composite structure. The artificial 

intelligence (AI) based machine learning and deep 

learning algorithm play a critical role in facilitating 

the advancement of automated inspection procedures 

for UT data. In this context, air-coupled ultrasonic 

testing (ACUT), we have successfully conducted 

experimental using composites panels with and 

without defect. ACUT results shows good 

correlation with ground. To facilitate automated 

defect detection, our algorithm employs a two-stage 

process. In the initial stage, we utilize C-Scan data 

generated by the ACUT system and analysed 

through a Convolutional Neural Network (CNN) 

image classifier, responsible for classifying the 

images into two categories: defects and non-defects. 

Subsequently, the defect instances are processed 

using Mask R-CNN, which generates bounding 

boxes and segmentation masks for each defect zone 

within the image with mPA of 89%. This process is 

implemented using TensorFlow. The the model's 

accuracy can increase further, by adjusting the 

hyperparameters, which can encompass aspects like 

kernel types, regularization strengths, or learning 

rates. 
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