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Abstract 
AI models such as convolutional long short-term memory (ConvLSTM) recurrent neural network 

(RNN) have been shown here to have the capability to simulate ultrasonic wave propagation in the 2-

D domain. This DPAI approach uses the Data-driven but simulation-assisted-Physics aware approach 

to utilizing AI networks. Our DPAI model comprises ConvLSTM with an encoder-decoder structure, 

which learns a representation of spatio-temporal features from the input sequence datasets. The 

DPAI model is trained with finite element (FE) time-domain simulation datasets consisting of 

distributed single and multi-point source excitation in the medium, reflection from the simple 

boundaries, and phased array steering. Here, this approach, called the DPAI model, is demonstrated 

for modelling multiple point sources to simulate forward wave propagation, reflection from the 

boundaries, and phased array beam steering ultrasound wave dynamics in a 2D plane. The trained 

DPAI model was found to be significantly faster in generating simulations for the time evolution of 

field values in the elastodynamic problem when compared to the conventional finite element explicit 

dynamic solvers. 
Keywords: DPAI, Ultrasonic Wave simulation, Phased Array, FE, Deep Learning, RNN, ConvLSTM. 

 

1   INTRODUCTION 

Ultrasonic wave propagation has wide-ranging 

applications in several fields, such as geological 

investigations, seismic research, non-destructive 

evaluation [1], and biomedical imaging. Improving 

our comprehension of the physics behind these 

applications depends heavily on the numerical 

modelling of ultrasonic wave propagation. The 

transitory nature of wave propagation and the three-

dimensional region in which the wave is to be 

modelled result in enormous processing resources 

and calculation times, which restricts the use of 

modelling in real-time field inspection. Numerical 

models such as Finite Element [1-2], Finite 

Difference [2], Finite Integrals [3], Galerkin 

Meshless [4], and other comparable techniques have 

been employed for modelling wave propagation 

simulations. The adoption of Graphical Processing 

Units (GPUs) with parallel computing models for 

wave propagation [5-6] and several other 

advancements in mesh discretization and 

computation have resulted in these techniques that 

are quicker and need less processing power.  

The FE simulation is, nonetheless, widely used for 

simulating ultrasonic simulations out of all 

numerical techniques [7]. By solving the wave 

equation's partial differential equation with specified 

boundary conditions, the FE simulation offers 

precise solutions for the most complex problems 

involved in solving wave dynamics for various 

geometry and boundary conditions. However, as the 

number of FE elements/nodes increases, it is 

generally known to be computationally costly, 

especially for realistic problems such as higher 

inspection frequency ranges and larger geometrical 

domains [8]. Due to its high memory requirements, it 

is mainly utilized for experimental validation or to 

create a proof of concept for the ultimate design 

iteration. An alternate strategy is to create a data-

driven solution for wave propagation modeling by 

extracting the physics from numerical simulation 

datasets [9-10]. 

Larger training datasets becoming available, 

algorithm advancements, and exponential increases 

in processing power have all contributed to an 

unprecedented rise in interest in deep learning 
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algorithms in recent years. Massive amounts of input 

data, particularly high-dimensional datasets [12], 

could be effectively classified [13], regressed [14-

15], clustered [16], or have their dimensionality 

reduced using deep learning algorithms. Therefore, 

one of these deep learning models could be used to 

generate wave propagation, depending on the 

structure of the datasets being available [17-19]. 

Since these training datasets include both temporal 

and spatial characteristics, recurrent neural network 

(RNN)-based techniques are thought to be the best 

for simulating the propagation of ultrasonic waves 

[20-21]. Contemporary deep learning systems like 

long short-term memory (LSTM), a specific kind of 

RNN structure employed for diverse applications in 

science and engineering, can handle vanishing 

gradients and create long-range temporal 

representations due to their inherent capacity [22-

23]. Convolutional LSTM (ConvLSTM) might be 

utilized instead of this algorithm as it is less 

successful at extracting spatial information from the 

training dataset. In order to complement the temporal 

state with spatial information, the convolutional 

operation is used inside the LSTM cell [24-27]. 

In this work, we present a novel 

methodology for developing a hybrid Data-driven-

Physics-based AI (DPAI) model for simulating 

ultrasonic wave propagation in real-time. This 

involves a supervised learning model obtained from 

deep convolutional long short-term memory 

(ConvLSTM) networks [28-30]. Our earlier research 

demonstrates the modeling of wave reflection from 

boundaries with varying physical settings and 

forward wave propagation simulation [31]. 

Additionally, in order to simulate phased array beam 

steering wave simulation in a 2D domain, the 

authors wish to expand the DPAI model widely. This 

study presents the development of three distinct 

DPAI models. The training datasets for the first 

DPAI model are created by simulating the time 

domain FE simulation of multiple point excitation 

sources inside the solid medium of forward wave 

propagations. This model is then utilized to model 

different multiple-point source excitation 

simulations. Similar to the first DPAI model, the 

second one is trained using a collection of FE 

ultrasound wave simulations, which provide the 

training data for single-point excitation at the 

medium's top surface with different 2D geometrical 

shapes. The phased array (PA) ultrasound technique 

is the most extended for defect detection and 

characterization in the NDE domain because of the 

ability to focus and steer the beam without the 

physical movement of the transducer. The primary 

advantage of the PA technique over the conventional 

ultrasonic technique is that large regions can be 

inspected from a single location using various 

ultrasonic profiles such as plane wave and beam 

steering and focusing without disturbing the 

transducer position, which is a much faster process. 

Therefore, we have modeled the 16 active elements 

phased array probe with variable angles of -40 to 70 

degrees in FE to produce the training dataset for the 

third DPAI model. In order to extract the temporal 

evolution and spatial feature information of 

ultrasonic wave mechanics, the DPAI network 

design uses a convolutional LSTM encoder-decoder 

structure. 

Using this DPAI model, it is shown to be 

feasible to model simulation with significantly 

reduced time and resources for computation that 

compares well with the FE model outputs. 

Furthermore, the DPAI, like most data-driven 

models, is based on algebraic calculations, and the 

computational resource requirements are 

significantly reduced compared to conventional 

numerical approaches. 

This paper is organized as follows: Section 2 

describes the DPAI training datasets created using 

Finite Element Analysis. The formulation of the 

wave propagation problem using the DPAI 

algorithms is detailed in Section 3. Numerical 

experimentation and results are given in Section 4, 

and Section 5 concludes the work. 

2 SIMULATION-ASSISTED TRAINING DATA 

SET GENERATION FOR DPAI: 

The AI model learns the principles of ultrasonic 

wave propagation while it trains the network to 

produce real-time simulations. This work uses the 

FE simulation method to obtain the bulk datasets 

needed for training the DPAI. This section provides 

a detailed description of the generation of the 

simulation-assisted data collection. 

2.1 Finite Element Modelling for Transient Wave 

Dynamics in the 2D domain: 

Large amounts of simulated-assisted data are 

required for the AI-enabled wave propagation in 

solids, and these are created by modelling FE 

simulation in the time domain. Abaqus/Explicit 
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Dynamics Solver, an FE software package, is used to 

solve the physics-based wave equation. A 

comparable 2D plane strain CAD model is created 

using a 35 x 35 x 20 mm test sample of carbon steel. 

The bilinear quadrilateral element is used to 

discretize the 2D domain into 22 elements per 

wavelength (longitudinal wave velocity). The FE 

nodes function as transmitter-receiver pairs by 

establishing a standard ultrasonic transducer 

location. To avoid the undesired reflections from 

ends, ALID (absorbing layers using increasing 

damping) applies the absorbing boundary conditions 

on all sides of the plate [32]. The two-cycle Hanning 

windowed tone burst signal of 5 MHz inspection 

frequency is used to excite the ultrasonic pulse of an 

incident wave given in function of time. The pulse 

excitation is applied in terms of single/multiple 

concentrated forces on nodes that act as the physical 

transducer. Figure 2(a) reports the three excitation 

point sources in the FE model. The sequence of the 

displacement plot over the total simulation time is 

extracted for every successful completion of the 

analysis. A similar approach is followed from our 

prior work for modeling [27]. 

In this work, we aim to teach DPAI the 

physics of wave propagation by creating different 

2D CAD models based on the probability 

distribution function (PDF) by computing critical 

transducer position parameters to generate a bulk 

quantity of training simulation data sets. The critical 

transducer position parameters are calculated using 

PDF based on the influence of real-time 

experimentation, such as expected loading direction, 

position probabilities, number of excitations point 

sources, the sensitivity of instruments, etc. We have 

generated three different datasets to develop three 

different DPAI models. In the first type of dataset, a 

one-direction load is applied per simulation in terms 

of concentrated force either in the X or Y-direction 

in the FE modelling, which is randomly located in 

the test sample area. The excitation point source is 

distributed from single to five excitation point 

sources. A total of 500 FE simulation sequences of 

the frame dataset are created. 

In the second type of dataset generation, we 

modelled three distinct geometrical CAD models 

with physical dimensions of 40 x 40 mm overall. 

Excitation load is applied to the top-edge nodes of 

1000 CAD models, each with three distinct form 

domains, as shown in Figure 5(a)-(c). These models 

are then solved in FE simulation. All other CAD 

model surfaces have traction-free boundary 

conditions applied to them in order to permit 

reflections off the side and rear walls.  

The third generation of datasets involves 

solving the governing wave equations in FE using 

initial and boundary conditions of the phased array 

of active elements. Using a predetermined focal law 

that has been computed for beam steering, the 16-

element active aperture in the PAUT approach is 

activated. These delay laws are fed into the Abaqus 

to model the concentrated force as the emitting 

source in the medium. All the active aperture 

elements are triggered in parallel using pre-defined 

delay laws to form the ultrasound beamforming to 

steer in the medium, and the FE simulation snapshot 

is shown in Figure 7(a). A total of 600 FE 

simulations is created by applying the delay laws of 

each beam steering angle. The steering angle used 

for simulation lies between -40 degrees to 70 

degrees.  

Generating one FE simulation takes 40 

minutes using time-domain FE analysis executed 

using a Dual Intel Xeon Platinum 8168 processor 

with 48 cores and 1000 GB RAM. Hence, this 

conventional explicit dynamics FE analysis is time-

consuming for design iteration. We have introduced 

the DPAI network to generate synthetic wave 

dynamic simulations to overcome this. 

3 MODELLING WAVE PROPAGATION 

SIMULATION USING DPAI 

In the Deep Machine Learning framework domain, 

recurrent neural networks have played a vital role in 

modeling spatio-temporal sequence output. The 

DPAI model architecture used for modeling wave 

propagation simulation is discussed in detail in the 

following section. 

The LSTM is a unique RNN structure modeled for 

addressing vanishing gradients and learning long-

range dependencies. The LSTM shown in  Figure 

1(b) consists of the following elements: a memory 

cell Ct, which can accumulate and forget the state 

being tackled from time-step to time-step. The input 

gate it controls the weather to include new 

information in the memory cell. The forget gate ft is 

responsible for removing information from the cell 

state, and an output gate Ot is responsible for 

transferring information from Ct to hidden state Ht. 

The hidden states could retain the memory of past 
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knowledge and learn the long-range dependencies in 

sequence data. The LSTM network is successful in 

many domains, but it will be a poor choice for 

modeling wave propagation problems, which is 

overcome by implementing a convolutional LSTM 

network. In this network, the higher dimension 

matrix multiplications are replaced with the 

convolutional operation, which reduces the number 

of training parameters and maintains the spatial 

features intact [24]. The key equations for the 

ConvLSTM network are as follows from our prior 

work [28]. 

 

Figure 1: (a) Typically DPAI stacked convolutional 

LSTM encoder-decoder architecture for modelling 

wave propagation phenomenon. (b) Structure of a 

single convolutional LSTM cell. 

The DPAI network algorithm is a combination of a 

convolutional neural network (CNN) and a recurrent 

neural network (RNN). We have used the proposed 

DPAI network for our spatial-temporal sequence 

generation problem, as shown in Figure 1(a), 

consisting of an encoder and a decoder network 

containing two convolutional LSTM cells stacked 

together. Each input sequence is fed into a new 

encoder ConvLSTM cell together with the hidden 

state from the previous ConvLSTM cell. The 

encoder processes input iteratively through various 

ConvLSTM cells and outputs embedding tensor, 

representing wave propagation. The output of the 

encoder-embedded tensor is fed to the decoder 

network to produce a predicted wave propagation 

simulation. The decoder cell outputs the sequence of 

feature maps for each predicted frame. These feature 

maps are transformed into actual predictions using 

3D CNN layers with a sigmoid activation function. 

4   NUMERICAL EXPERIMENTATION AND 

RESULTS USING THE DPAI MODEL 

In the following section, ultrasonic wave 

propagation physics is taught to the DPAI model 

while training the network to generate the synthetic 

elastodynamic simulations is discussed in detail. The 

DPAI architecture is implemented based on the 

dataset generated in section 2. The qualitative and 

quantitative results of trained three different DPAI 

model performances on wave propagation datasets 

are described in detail in this section. 

4.1 DPAI model training and testing on forward 

wave propagation simulation: 

To train the artificial intelligence algorithms needs a 

large number of training data sets for better 

performance. The proposed DPAI model is trained 

using FE-generated simulation-assisted training 

sequences created using a single excitation to 

multiple point excitation sources applied as 

triggering signal pulse. These training data sets are 

extracted from FE simulation as the sequence of 

images over 5 microseconds with a sampling time 

interval of 0.74 microseconds per frame. These 

simulation data are extracted as frames over 5 

microseconds with an interval of 0.74 microseconds 

per frame. We have created a total of 1000 

simulation data sets from FE analysis. These 

sequences contain 675 frames per simulation. Each 

simulation is divided into a mini-batch of 12, and 

each mini-batch contains 15 sequences of frames. 

The total mini-batch is split as 80% for training, and 

the remaining 20% is used for testing. Each 

sequence of frames is further divided into 10 for the 

input and 5 for the ground truth. Although the input 

sequence and ground truth instances are sliced from 

the same simulation having dependencies, this 

splitting strategy is still reasonable because, in real 

experimentation, we have access to the previous and 

successive subsequent frames, which allows us to 

predict the full-length simulations. These datasets 

are in greyscale with pixel values of range [0, 255], 

normalized from [0,1] pixel values with a size 256 x 

256.   

The proposed DPAI model is implemented in 

PyTorch-lightning [33-34], an open-source 

framework that is great for removing many 

boilerplate codes and integrating multi-GPU 

training. The DPAI architecture shown in Fig. 2 

consists of four layers of encoder-decoder structures 

stacked together. Each layer contains 256 hidden 

states with a 5 x 5 kernel size. A mini-batch size of 

12 sequences is drawn from a random distribution as 

input to the network. The DPAI network is trained to 

minimize the Mean Square Error (MSE) loss 
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function using the back-propagation through time 

(BPTT) algorithm. The network’s learnable 

hyperparameters are initialized to zeros to prevent 

the instability of the network. The Adam optimizer is 

used to optimize different network weights and 

biases with a learning rate set to 0.0001 and trained 

for 200 epochs.   

 

Figure 2: (a) An example of the FE model, where 

the incident wave is triggered by modelling the three 

excitation point sources. The absorbing boundary 

condition is applied to all wall sides with different 

damping coefficients to prevent undesirable effects. 

(b) DPAI: Training/Testing: the forward wave 

propagation dataset's average loss values over the 

number of epochs. 

The average loss metric is used to measure the 

performance of the network while training. The loss 

is calculated by comparing the network-predicted 

simulation with ground truth simulations. Figure 2 

shows the average loss values over the number of 

iterations. The average loss values are stabilized over 

the iterations; thus, the network's predicted sequence 

of images is comparable with the ground truth 

sequence of images. The training loss for the entire 

data is 0.00038 for 260k iteration, and the testing 

loss is 0.00052. Training and testing execution is 

done on NVIDIA GeForce RTX 3090 dual GPU 

machine. The time taken to train the DPAI model is 

about 32 hours.  

We have used a trained network as a predictive 

model for emulating time-domain ultrasonic wave 

propagation. We have adopted a continuous 

prediction strategy for predicting the successive 5-

frames in a sequence by continuously providing the 

previous 10-frames as input to the DPAI model. We 

have provided an initial input mini-batch of frames 

from FE analysis; then, the predicted frames are 

given as input to form a closed loop for predicting 

the entire simulation. This procedure continually 

loops until all frames are anticipated until total 

frames are generated in a simulation. In this 

procedure, frames from the FE simulation are 

supplied for the first iteration, and the result from the 

previous iteration is used as input to forecast the next 

set of frames for the succeeding iterations. 

We have modeled three different FE simulations 

with three excitation, six excitation, and nine 

excitation point sources to predict the forward wave 

propagation simulation. To determine the trained 

network’s efficiency, we need to examine 

qualitatively by comparing the DPAI-modeled 

simulation with the FE simulation and comparing the 

A-scan extracted from the AI-predicted simulation 

and FE simulation at model center pixel locations 

within the frame. Training and testing execution is 

done using the same computer hardware. The 

predictive network takes approximately 2 minutes to 

generate 675 frames of a single simulation. With this 

approach, we could successfully reduce the 

computational overhead to a greater extent, which is 

20X faster than the conventional FE solver. 

 

 

(a) Comparison between AI/FE simulation for 

the single excitation source. 

 
(b) Comparison between AI/FE simulation for 

four excitation sources 



Thulsiram Gantala et al.                                                                          JNDE, Vol. 20, Issue 4, December 2023 
65 

  
 

Journal of Non Destructive Testing & Evaluation (JNDE). Published by Indian Society for Non-Destructive Testing (ISNT) 

http://jnde.isnt.in 

 

 

(c) Comparison between AI/FE simulation for 

five excitation sources 

Figure 3: A qualitative comparison between FE 

simulation with DPAI-generated simulations for the 

deeper time period of (a) three, (b) six, and (c) nine 

excitation sources for spatial features information 

and time evolution of ultrasonic wave dynamics. 

 

 

(a) Three excitation point sources: A-Scan 

 

 

(b) Six excitation point sources: A-Scan 

 

(c) Nine excitation point sources: A-Scan 

 

Figure 4: Extracted FE simulation-based A-Scan is 

compared with DPAI predicted simulation-based A-

Scan to validate the effectiveness of the DPAI 

predictive model for wave propagation simulations 

at the centre of the frame's location for three (a), six 

(b), and nine (c) excitation sources. 

Figure 3(a)-(c) shows the wave propagation 

phenomenon evaluation over time for three, six, and 

nine excitation sources. Figure 3(a) describes the 

three excitation sources for spatial feature evaluation 

of FE and DPAI simulations over time. Figure 3(b) 

shows the ultrasonic wave propagation evaluation 

for six excitation sources for the top row FE and the 

bottom AI predicted simulation. Finally, Figure 3(c) 

evaluated spatial-temporal wave dynamics in the 

solid medium for nine excitation sources on top-

ground truth and bottom DPAI. As seen in Figure 3, 

the predicted frames are identical to the ground truth; 

these are qualitatively in good agreement in terms of 

constructive-destructive interference at wave 

interaction and spatial feature evaluation. We have 

extracted an A-Scan at a center location inside 

DPAI-predicted and FE simulation frames to 

validate each predicted frame, acting as the 

transducer position shown in  

Figure 4(a)-(c) for three, six, and nine excitation 

sources, respectively. The A-Scan is used to identify 

the error between the predicted and ground truth for 

each frame at the transducer location. We have 

observed that its magnitude falls within 2% error for 

all the scenarios A-scan according to mean square 
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error over the entire simulation; it will be true as 

long as the field values are not entirely zero. 

4.2   Simulating Reflection Wave Propagation 

from Irregular Boundaries Using the DPAI 

Model: 

The second DPAI model is trained using the dataset 

obtained for reflection borders to model the 

propagation of reflection waves at irregular edges. A 

similar training methodology is employed to train 

the DPAI, described in section 4.1. With the 

exception of the number of epochs and the kernel 

size being altered to 3 x 3, the DPAI model 

architecture and layer count are comparable to 

section 4.1. There are 256 hidden dimensions in 

every encoder or decoder structure. Over 400 

epochs, the average loss value is 0.00042, and the 

testing loss value is about 0.00068. Figure 5(b) 

shows that the loss value stabilizes as the number of 

epochs grows. 45 hours are needed to train the DPAI 

model using an NVIDIA GeForce RTX 3090 dual 

GPU machine. 

 

In order to expand the scope of the DPAI model, we 

have examined the propagation of ultrasonic waves 

in two distinct irregular geometrical domains. A 

comparison is made between the FE and the 

anticipated simulation of the DPAI model. Figure 6 

shows the reflected ultrasonic wave propagation for 

irregular geometrical shapes. Figure 6 has 

simulations from the FE in the top row and the  

 

 

Figure 5: (a) Finite element models: To create the 

training dataset, FE models with single point 

sources are excited in the Y direction at the top 

surface of the domains. (b) DPAI: Training/Testing: 

The model was trained using the reflection from the 

boundary datasets, the model average training, and 

the testing loss throughout the number of epochs. 

 

 

(a) FE/DPAI simulation comparison for the 

rectangular boundary. 

 

(b) FE/DPAI simulation comparison for the 

irregular geometry 

Figure 6: Reflected wave propagation with irregular 

geometrical boundaries: The DPAI model is 

implemented to simulate the wave propagation 

simulation in the various irregular geometrical 

domains. The sequence of frames generated using 

FE and DPAI simulations are compared at multiple 

time instants. The 5 MHz central frequency with two 

cycles is used to model the simulation from DPAI 

and FE for the rectangular domain (a) and irregular 

geometry shape in (b), respectively. 

 

anticipated simulation from the DPAI model in the 

bottom row. The suggested DPAI model is trained 

with boundaries that have straight edges, but it can 

produce simulations with irregular. The DPAI model 

is capable of producing reflection wave propagation 

from sharp edges as it has learned wave interaction 

physics at the domain edges from the training 

datasets. Thus, the DPAI model matches the FE and 

correctly predicts the propagation of reflection 

waves from the side and back walls. 
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4.3 Simulating Phased Array Beam Steering 

Wave Propagation Simulations using DPAI: 

The third DPAI model is trained using the dataset 

generated by modelling the phased array beam 

steering simulations in FE simulations. We employ 

the same DPAI architecture as section 4.1. Using 

NVIDIA GeForce RTX 3090 GPU processors, the 

DPAI model is trained for minimizing the mean 

square loss function by back-propagation through 

time (BPTT) at a linear rate of 0.0001 over 300 

epochs. The training procedure takes around 56 

hours. As seen in Figure 7(b), the testing loss is 

calculated to be 0.00025, and the average training 

loss is 0.00078. The FE simulation dataset is used to 

evaluate the trained DPAI model in order to quantify 

its efficiency. 

We have taken into consideration a variety of phased 

array beam steering simulations aside from the ones 

utilized during training and testing in order to 

evaluate the trained DPAI model qualitatively. The 

DPAI model receives the preceding 10 frames as 

input and outputs the next 5 frames to create the full 

simulations. This procedure loops up to the entire 

number of sequences of frames produced in a series. 

The initial frames obtained from the FE simulation 

are given as input for the first iteration of the 

simulation-generating process. The output of the 

previous iteration's generated frames is used as input 

in the subsequent iteration to complete the full-

length simulations.  

With the phased array beam steering angle set to 30 

degrees, Figure 8 depicts the wave propagation 

sequence of frames at the same time occurrences 

between DPAI and FE. In particular, we present the 

FE and DPAI simulation at exact time instances t = 

[0.9 𝜇s, 1.1 𝜇s, 1.5 𝜇s, 1.9 𝜇s, 2.2 𝜇s] for the long-

term simulation. The top row in Figure 8 shows the 

FE (ground truth) sequence, while the bottom row 

reports the DPAI simulation. It is evident that there 

is a robust qualitative agreement between the DPAI-

generated simulations and the FE simulations. 

 

 

Figure 7: (a) FE modeling: all the active aperture 

elements are triggered in parallel using pre-defined 

delay laws to form the ultrasound beamforming to 

steer in the medium. (b) DPAI: Training/Testing: the 

average loss values over a number of epochs for 

phased array beam steering datasets. 

 

 

Figure 8: Phased array beam steering simulation 

 The DPAI model performance in simulating the 

phased array beam steering simulation is compared 

with FE. In FE, a 16-element active aperture is used 

for generating simulation with the central frequency 

of 5 MHz with two cycles. The 30-degree beam 

steering pre-calculated focal law is applied in FE. 

The FE generated in the first 10-frames is fed to 

DPAI for generating successive next 5-frames. 

The phased array (PA) ultrasonic technology allows 

for beam steering and focusing without requiring the 

transducer to move physically, it is the most 

advanced method for defect characterization and 

identification in the NDE domain. The main benefit 

of the PA technique over the traditional ultrasonic 

technique is that it is much faster to inspect large 

regions from a single location using a variety of 

ultrasonic profiles, such as beam and plane wave 

steering and focusing, without having to move the 

transducer. 
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5   CONCLUSION: 

This work presents a novel and innovative deep 

learning DPAI approach for rapid computation of the 

ultrasonic wave propagation for point sources, 

reflection from boundaries, and phased array beam 

steering simulations. The method is trained using 

spatial-temporal FE simulation data. The DPAI 

model is learning representations of time-domain 

elastodynamic simulations from training datasets. In 

order to simulate the propagation of ultrasonic 

waves, data-driven, physics-aware AI prediction 

algorithms are used. A DPAI model is significantly 

faster than a conventional FE solver in computing 

simulation. The trained DPAI model enables users to 

simulate significantly larger domain simulations, 

single to multiple excitations point sources, 

reflection from irregular geometrical boundaries, and 

phased array beam steering ultrasonic wave 

propagation in 2D. The data it yielded demonstrated 

the suggested DPAI's efficacy in accurately 

replicating wave propagation phenomena. In this 

article, we first trained the AI network only by 

simulation of the wave transmission phenomena, and 

we were able to obtain the expected outcomes for the 

wave dynamics assessment for forward and 

reflection from boundaries. In further research, we 

will place many defect classes and their 

combinations to mimic different wave propagation 

scenarios, such as reflection, refraction, creeping, 

and scattering effects. 
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