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Abstract 

 

The paper highlights a new paradigm using simulation-based analysis that employs physics-based 

models in parallel processing using GPU for rapid generation of synthetic data sets. This paper 

discusses the development of a Simulation Assisted ADR (Automatic Defect Recognition) using the 

physics-based simulation models of the different NDE/NDT imaging modalities as well as Deep 

Learning (DL) and/or Machine Learning (ML) models. Our approach addresses the classic issues 

during the implementation of DL/ML approach to Radiography and Ultrasonics based NDE/NDT data 

interpretation that includes lack of sufficient apriori data as well as biases in the data sets, among 

others.  Here, using the limited experimental/field NDE/NDT data sets that are available and by 

deriving critical statistical distribution parameters from this data set, the stochastics of the simulation 

models are determined. Thereby, the simulated data sets are generated using numerical simulations 

along with the variations in the different parameters during experimental/field data acquisition. This 

process allows the generation of simulated data sets in large quantity that augments the smaller data 

sets obtained experimentally. This rich data set is subsequently utilized to train the DL models and 

provide reliable ADR algorithms.  Weld and AL casting radiography data sets from Digital X-ray 

Images and PAUT (with FMC/TFM) are both used to demonstrate the SimADR approach. 
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1.0 Introduction 

Digital X-ray and Phased Array Ultrasound imaging 

inspection technologies have been well documented in 

the field of industrial and medical applications. The 

use of digital X-ray imaging has been further enhanced 

by techniques such as Computed Tomography (CT) 

that have the capability to expand the conventional 2D 

imaging modalities into 3D volumetric imaging. 

Similarly, the Phased Array Ultrasonic Imaging 

technology (PAUT), particularly with the FMC/TFM 

mode, has vastly improved the ability to image, 

characterize, and size defects.  

 

The ability of the advanced NDE imaging 

technology has reached very significant maturity 

permitting the operator to provide advanced insights 

into the state of the component, and more importantly, 

into the root cause analysis of the anomaly formations 

during manufacturing as well as prediction of the 

effect of these anomalies on performance of the 

components. While these advancements do represent a 

significant enhancement of diagnostic capabilities, the 

trade-off has been the large volume of data and the 

time consumed for processing this data set as well as 

the analysis of the processed data. This trade-off has 

led to requirement of additional well-trained 

manpower, faster processing instruments, and 

consequently its implementation in a post processing 

mode rather than the preferred in-line diagnostic 

mode.  

 

Several researchers explored the identification of 

defects from radiographic images using different 

techniques and approaches [1-2]. Artificial 

intelligence and computer vision methods can be used 

to aid in analyzing the X-rays and provide an 

indication of the examined material's diagnosis. There 

has been a lot of effort to build and construct 

computational tools focused on image processing, 
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computer vision, artificial intelligence and other 

related tools with the aim of encouraging radiograph 

analysis and thus improving the robustness, accuracy 

and speed of the inspection process [3-4]. Owing to the 

exponential increase in the capability of the processing 

algorithms as well as the computing power of the 

hardware the implementation of sophisticated image 

classification, object detection, and image 

segmentation of welds are advancing significantly. 

The development of deep Convolution Neural 

Networks (CNN) has led to major improvements in 

several tasks related to image processing. Ferguson et 

al [4] demonstrated the defect detection system of the 

deep learning model Mask RCNN that uses the 

transfer learning technique exceeds the state-of-the-art 

performance on the GDXray [5] datasets of X-ray 

images of both casting and welds. In this work, we 

present the accomplishment of an automated defect 

recognition (ADR) system that uses deep learning 

algorithms to improve the effectiveness of the 

automated data analysis. The defect detection system 

used in this work is based on Mask Region-based CNN 

[6] that simultaneously perform object detection and 

image segmentation. 

 

The application of the phased array ultrasonic 

testing (PAUT) has becoming common in the field of 

non-destructive evaluation (NDE) for faster scanning 

and better visibility of the scanned sample [7]. While 

manufacturing the welds, the weld flaws occur 

inherent to the structure, and some are due to the 

improper choice of process parameters. Inspection of 

welds are challenging due to the massive structures 

containing thousands of welds, and a few are 

inaccessible. The PAUT overcomes this challenge by 

allowing to inspect large regions from a single 

location, which gives an advantage to inspecting the 

components with limited access and complex surface 

geometry. The Total Focusing Method (TFM) is a 

sampling of PAUT [8]. The TFM is an image 

reconstruction technique that uses Full Matrix Capture 

(FMC) ultrasonic signals to construct a fully focused 

image [9]. This technique characterizes the weld flaws 

better when compared to conventional PAUT [10].  In 

the process of identifying defects, it is difficult to place 

the transducer on the weld area due to an uneven bead 

surface. Hence instead of using the normal ultrasonic 

wave beam, the angular wave beam with a multi-skip 

wave path is used to inspect the welds. At a given point 

in time, the transducer receives ultrasonic signals from 

different wave paths, such as direct TFM, half-skip 

TFM, and full-skip TFM [11]. The mode conversion 

takes place at the back wall and at the flaw location, 

and this mode converted ultrasonic signals are used to 

generate high-resolution TFM imaging. These 

reconstructed TFM images are examined by NDT 

experts to characterize weld flaws and qualify them. 

As it involves the processing of bulk images by NDT 

experts, there may be chances of human errors while 

identification of the defect and the inability to 

distinguish among themselves. AI, robustly identifies 

object detection and classification tasks through 

feature extraction [12].  

2.0   Approach 

2.1  X-ray Data Sets 

The key technology in this work for X-ray based 

datasets is the development of advanced Simulation 

assisted Automated Defect Recognition (SimADR) 

algorithms for flaw detection, classification, and 

characterizations of different types of Castings and 

Weld Defects. These castings and weld joints are 

likely to develop flaws at the interfaces and inside the 

weld due to perturbations in the process variables and 

consequently its manifestation in the final products are 

inherent in a mass-manufacturing environment due to 

several reasons. Several forms of simulation software 

have been developed over the past few years for 

radiological applications [13-16]. In this work, the 

method is based on creating a radio-graph database 

with different potential defect characteristics using a 

simulation model based on ray casting and using this 

to train a deep-learning algorithm. The Sim-ADR 

system is proposed to enhance the detection and 

identification of the defects from the X-ray images of 

castings and welds. Fig-1 presents the Sim-ADR 

development flowchart. The proposed system consists 

of three main stages; a pre-processor, a simulation 

engine for X-ray images (Sim-Xray), and Artificial 

Neural Network based Automatic Defect Recognition 

(ANN-ADR). Each stage consists of a variety of 

processes and communicates correctly with the input 

of the next stage before the final identification report 

is obtained. In the following subsections, the 

functionality of each stage is described in more detail. 

 

The Pre-processor unit prepares the radiographic 

image for the annotation task by enhancing the defect 

features in the image. The 16-bit X-ray image input 

first goes through a normalization step. Algorithms to 

enhance the images are implemented using a 

combination of many Image processing filters like 

Sharpening filters, Contrast Limited Adaptive 

Histogram Equalization (CLAHE), and FFT-Low Pass 
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filters, such that the defects are clearly seen for the 

annotation. In the Annotation toolbox, the defects are 

marked using the built-in annotation features like 

magic-wand, contour, and circulation, and the 

annotated data are stored in a suitable format to train 

the Neural network. This is followed by automatic 

segmentation of defect region and annotation using the 

defined rules. On the successful verification of the 

annotations by the Radiography Expert, the annotated 

images are sent to the ANN-ADR module. This 

approach has been discussed elsewhere with more 

details [17]  

 

 
 

Figure 1:SimADR system Development Flowchart 

 

2.2  PAUT with FMC/TFM Data Sets 

The SimADR approach for PAUT data sets is similar 

to X-ray data sets, as shown in Fig. 1. However, the 

simulation-assisted weld TFM imaging is generated 

through fewer finite element (FE) simulation followed 

by the deployment of generative adversarial network 

(GAN) algorithms. These augmented images are used 

to train the neural network in the standard process [18-

19].  The syntheses of the required high-resolution 

image dataset by implementing AI-based frameworks 

such as GANs [20]. The deep convolutional generative 

adversarial networks (DCGANs) [21] is a variant of 

GANs, which is a convolutional neural network 

(CNN) based framework. The DCGAN uses a 

complex algorithm to generate new images, which 

come from the training data sets distribution. 

However, the generated new images are similar to 

trained images but different in terms of varying defect 

patterns, clusters, and locations. In this framework, 

two separate CNN network architectures exist and 

compete with each other during the training of the 

networks. These neural networks are trained in an 

adversarial manner to generate imaging data by 

mimicking distribution from the real training images. 

Thereafter, the new imaging samples are generated 

from the trained AI network [22]. In this process, the 

AI-based model generates the training data sets several 

orders faster than classical FE simulations. Hence, the 

AI-based simulator can provide a vast volume of 

imaging data sets with comparatively reduced 

computational resources and time.   

 

Subsequently, for ADR, we have used a 

convolutional neural network (CNN)-based 

framework, such as the YOLOv4 model [23], to detect 

and classify the weld flaws using the AI/FE generated 

simulated datasets. This algorithm scans the entire 

image at once to predict the outcome, which is a faster 

end-to-end deep learning object detection CNN-based 

model. The single pass image makes the YOLOv4 

model faster and can be used in real-time automated 

defect recognition. Over a while, a series of 

advancements have taken place to improve the YOLO 

network performance [24]. The model divides the 

entire input image into a grid of cells and then predicts 

the bounding boxes and class probability of these 

boxes. The network generates multiple bounding 

boxes for a single defect. However, using the non-

maximal suppression algorithm for an individual box 

for each defect in an image. Before training the ADR 

model, the AI/FE datasets need to convert to a specific 

YOLOv4 model acceptable format. Therefore, each 

defect in every training data sets image has to be 

annotated with a bounding box and the class of the 

defect. The transfer learning technique is used for 

YOLOv4 model training instead of random 

initialization of the network hyperparameters because 

the model has been pre-trained with various shapes in 

the training data sets. Although the YOLOv4 model is 

pre-trained, a large volume of training/testing datasets 

is required to teach the network of the different classes, 

sizes, and locations of the defects in the welds. For 

more details, kindly see the publication by authors 

elsewhere [22]. 

3.0   Results and Discussion 

3.1  X-ray Data Sets 

The x-ray radiography images were obtained on two 

types of test samples (a) Aluminum Cast, and (b) Steel 

welds. Fig. 2 shows the result obtained from using 

SimADR algorithm using the SimXRAY software as 

the modeling tool. The color represents the different 

categories of porosities in the casting as per ASTM 

2422 standards. 
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The results presented in Fig. 3 shows the influence 

of the simulated data sets on the performance of the 

SimADR algorithm for the AL casting data set. In this 

work, the ground truth used was over 54,000 of the 

experimental images that were available.  While this is 

not common for such a large number of annotated 

images to be available, this particular example allowed 

for the comparison of the pure experimental versus 

simulated data sets.   

 

 
 

Figure 2: The SimADR result on an AL casting digital 

X-Ray image showing the ADR on the left from the raw 

data on the right. 

The ratio of the number of simulated data vs 

experimental data was varied and evaluated. It was 

observed that, as expected, the POD Accuracy was 

improving with the number of data sets used in the 

training of the SimADR AI engine. Accuracy of 95% 

was obtained for this Al cast sample. The false positive 

(false-call) rate was also found to decrease 

significantly with an increase in the number of data 

sets used.  

 

A similar approach was employed using the 

SimXRAY simulation software for the development of 

a synthetic data set for the as-welded sample. Here, the 

weld bead geometrical feature was captured using 

laser scanners, and a weld bead stochastic model was 

developed and used in addition to the stochastic 

models used for modeling the other parameters such as 

defect geometry, alignment, noise, etc. Fig. 4 shows 

the SimADR output with the defects mapped on the 

weld region as well as the raw radiographic image 

used.  

 

3.2 PAUT with FMC/TFM Data Sets 

As discussed in section 2.2, the FEM models were 

used to generate datasets for creating the FMC/TFM 

datasets for two types of volumetric defects, such as 

the cluster of porosity and the cluster of slag 

inclusions. 

 

 
Figure 3: The plot shows the influence of levels of 

simulation data sets used in the SimADR for the 

images on the AL casting test sample shown in Fig. 2 

 

 
 

Figure 4: The SimADR result on a steel weld sample 

digital X-Ray image showing the ADR on the above 

image that was obtained from the raw data image 

below. 

 

Single and multiple defect case studies were 

considered. A typical simulated image for slag 

inclusion is shown in Figure 5.  The datasets used for 

training the SimADR engine comprised a small set of 

experimental data and a larger set of simulated data. 

The trained SimADR engine was tested on many real 

weld scenarios. Figure 6 illustrates an example of one 

such welded structure of 1 m long inspection result. 

Using the SimADR engine and the FMC/TFM data 

sets, it was feasible to not only detect the defects but 

also to classify and size defects.  
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Figure 5: Simulated PAUT TFM Image of a butt-weld 

with a cluster of slag inclusion (a) Welded Sample, (b) 

Experimental image, (c) Simulated image. 

 

 
 

Figure 6: Screenshot of the weld data using SimADR 

with a B and C-scan representation on the left and the 

ADR result table on the right for a V-Weld with a 3D 

visualization plot. 

4.0  Conclusions 
 

Physics based simulations were employed for the 

generation of synthetic datasets for both digital 

radiography and Phased Array Ultrasonic Testing 

(PAUT) with FMC/TFM. The SimADR engine were 

trained and found to successfully provide automation 

in the interpretation of the datasets. Of the several case 

studies that were evaluated, Al casting and Weld 

inspection applications were demonstrated.  
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