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Abstract 
The use of machine learning in non-destructive evaluation (NDE) is a growing trend in the industry 

and a necessary development towards NDE 4.0. Beside academia, there are numerous case examples 

where machine learning is in use for actual inspections already. The main benefit of machine learning 

powered NDE is its reliability and repeatability to find flaws from the data. However, as the 

fundamental is in image recognition, machine learning can facilitate the inspection in general beyond 

just finding defects. These can be recognising the welds, image quality indicators and other features 

which the inspectors usually have to identify by themselves. In addition to reliability increase, 

automating these repeatable tasks increase the speed of data analysis considerably, saving inspector’s 

time where it is most valuable. In this paper we review use cases where machine learning has been 

used in NDE and how these approaches benefit the end customer. 

 

 
1.0  Introduction 

Traditionally for mechanized NDE, inspector goes 

through all the data manually. This is a laborious task 

and usually takes a lot more time than the actual 

recording of the data. Naturally this data amount has 

been already limited by scanning only areas which are 

structurally most significant or are known to be under 

considerable loads or corrosive environments. 

However, there is still considerable amount of data to 

be evaluated by the inspector and the flaws are 

typically rare. Thus, the majority of the inspector’s 

time is spent viewing data that contain no flaws. 

Furthermore, as inspectors’ time is spent in data 

evaluation the final report is often limited to the bare 

essentials regarding data evaluation; pass or fail. 

Machine learning (ML) changes this considerably. 

The ML model can go through the data and highlight 

the areas of interest. This leaves the inspector to only 

look and evaluate the possible flaw indications, 

skipping the looking of data which contains no 

indications. Moreover, ML can be used as an extra 

inspector where the procedure requires one or more 

inspectors to go through the data. 

Previous research cases have covered ultrasonic 

data in welds [1] and noisy conditions [2]. Machine 

learning models have also been successfully in more 

challenging welds such as austenitic welds [3] and 

dissimilar metal welds [4]. The field progresses 

forward with modern ML models as [5] used modern 

U-net [6] for feature detection in radiographic images 

and [7] compared the effectiveness of other modern 

models such as ResNet and MobileNet with ultrasonic 

data. 

In ultrasound NDE, ML has been used beside flaw 

detection in denoising of the signal to achieve higher 

image quality with autoencoders [8, 9, 10]. Naturally, 

this autoencoder approach has been used for 

increasing the efficiency of flaw detection with a ML 

model [11] and artefact detection [12]. 

Modern ML approaches have been proven to work 

in NDE for feature and flaw detection. Furthermore, 

they have proven to be versatile enough to process the 

recorded data even further. However, while the ML 

models are ready and capable for field use, the 

mindset needs to change in order to fully achieve all 

the benefits from NDE 4.0. As machine learning has 

enabled a great reliability and efficiency increase in 

presentation needs to be taken even further. 

Traditionally, inspections have provided a report with 

a pass or fail evaluation where the data might not have 

been recorded. In [13] visions NDE 4.0 to be driven 

more toward data-oriented manner, where inspection 

and sensory data could be readily implemented to 

process monitoring. However, the transition needs to 

be gradual or the sudden requirement of cognitive 

demands and complete paradigm change might cause 

lack of acceptance or insufficient use [14]. 

In this paper we demonstrate the capability of 

modern machine learning models for ultrasonic 

inspection with two different model architectures, 

VGG16 [15] and U-net. Furthermore, we demonstrate 

the data presentation and reporting and how it evolves 
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from traditional report to more interactive way of 

viewing the inspection results. 

2.0 Use Cases 

For the use cases we go through four ML solutions 

for NDE. First the metro axle inspection with 

ultrasound, second control-rod drive mechanism 

inspection with time-of-flight diffraction, third 

dissimilar metal weld inspection with phased array 

ultrasound, and finally a composite inspection with 

ultrasound. 

2.1Metro axle inspection 

For following case studies, the earliest model was 

taken into use in 2019, when first metro axle 

inspection was made with the aid of a machine 

learning model. The inspection is made with 

conventional ultrasound but with multiple probes. 

The data in new axles are simple, but as the axles wear 

during use, indications start to show from dents from 

rocks. Varying geometry makes the data 

interpretation challenging even for an experienced 

inspector. Due to these aspects, the use of simple 

amplitude threshold is infeasible, since the inspector 

needs to evaluate the indication and distinguish the 

signal from other indications. 

A machine learning model was taught to detect 

cracks from the ultrasonic data. The model was based 

on a VGG-16 image recognition model. Thermal 

fatigue cracks were made into an axle specimen to 

generate initial data for machine learning. The data 

was augmented with virtual flaws to generate ample 

data and extra thermal fatigue cracks were 

manufactured for testing and validation of the model. 

The working model managed to reduce the inspection 

time considerably from multiple hours to an hour. 

While the increase in effectiveness was considerable, 

the reliability of the model was also significant. 

The approach enabled data recording as 

previously, but in the data analysis the inspector was 

aided by the machine learning model and would only 

look at sections from the data which the model 

highlighted as seen in Figure 1. While the model did 

not point the exact location of the flaw it screened area 

of the data which the inspector would the evaluate and 

determine if the area contained a flaw. The final 

output of the model is a traditional PDF file, highly 

similar to normal inspection report. This output and 

functionality is industry 3.0 as there is no interaction 

in the report or automation for the data to be uploaded 

to a network for further storage and use. 

Figure 1: Output for the axle inspection. Indications 

highlighted in red from the calibration axle. 

2.2 Control-rod drive mechanism inspection 

(CRDM) 

CRDM inspections in nuclear power plants are done 

with time-of-flight diffraction (TOFD) technique. 

Due to the geometry of the drive mechanism, there are 

a lot of indications that are not actually flaws. The 

data evaluation is challenging as the diffraction tip 

signal is difficult to detect when scrolling through a 

considerable amount of TOFD data. In addition, there 

can be noise from poor contact or similar deviations. 

The approach was similar as with the metro axle 

case, since the model was based on the VGG-16 

approach. The model would screen the data and 

highlight areas for the inspector to look at more 

carefully. As the inspector is no longer required to 

scour all the data as in Figure 2, the risk of missing a 

flaw by a mistake is reduced. This is particularly 

helpful since the data is required to be evaluated by 

multiple different inspectors, thus the time from one 

evaluation can be decreased considerably. 

This model was put to a field trial, where number 

of qualification flaws were evaluated by the model 

and the performance was compared to a human 

inspector evaluating the same data. 

The model was able to detect the same 

qualification flaws as the human inspector. No 

qualification flaws were missed by the human 

inspector or the machine learning model. However, 

there was a significant difference in the evaluation 

time between the inspector and the inspector aided by 

the machine learning model. 

 

The output report seen in Figure 3 was an HTML 

document, where the results were highlighted for the 

inspector and the inspector could scroll through the 

vicinity of the indication to verify the result. Slight 

improvement toward NDE 4.0, but still the 

automation and system integration aspects could still 

be enhanced to achieve true NDE 4.0 performance 
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Figure 2: Traditional way of inspecting TOFD data 

 

 

Figure 3: Indications highlighted by the ML model 

2.3 Dissimilar metal weld inspection 

Dissimilar metal weld (DMW) inspections are 

notoriously difficult inspections for ultrasound due to 

high noise and attenuation from the material structure. 

Moreover, these inspections are usually made in 

safety critical areas with high demand on reliability 

and low tolerance on false calls. Mostly these 

inspections are done with phased array ultrasound to 

gather enough information for flaw detection. As the 

data amount increases, so does the evaluation time. To 

reduce and ease the evaluation, different image and 

data processing methods are commonly used to help 

the inspector. One of these is merging the different 

angles obtained from phased array data to form a 

single merged ultrasonic image for the inspector to 

view. However, as the merge methods tend to leave 

artifacts and there is a possibility to lose data in the 

process, inspector usually needs to view the data 

completely. 

For this case a U-net based semantic-segmentation 

model was used to detect flaws from the ultrasonic 

data and the output from the model can be seen in 4. 

In addition to detecting the flaws, the model could 

indicate the location of the flaw. By knowing the flaw 

location data analysis could be facilitated in such a 

way that an indication list would be presented to the 

inspector. This indication list would then show the 

actual indication in the data with pre-processed 

ultrasonic data. Then the inspector could readily 

measure the indication and move to the next one. As 

in the metro axle and CRDM inspection cases, the 

inspector would only evaluate the indications shown 

by the model, increasing the data evaluation speed 

considerably. Furthermore, the approach was more 

integrable with other systems as the result could be 

implemented to a regular inspection software as well 

if further analysis would be required. 

2.4 Composite inspection 

For the composite inspection the model was based on 

the VGG-16 approach. The target was to detect pores 

formed in the composite manufacturing. While 

ultrasound is ideal to detect pores and laminar defects 

from composite structures, the manual labour of the 

data analysis makes the pore detection and monitoring 

infeasible for human inspectors. Figure 5 

demonstrates how the ML model has detected and 

highlighted the pores in the specimen. 

As seen in Figure 5 there are numerous 

indications, thus it would have been infeasible for a 

human inspector to mark and track all the indications.  

 

Figure 4: Result for DMW inspection from the ML 

model. Indication list on the left, which highlights the 

findings from the data. The height of the flaw can be 

measured easily by the inspector. 
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Once these indications are known they can be tracked 

over production batches for quality control purposes. 

Moreover, if pores pack as denser cluster they can be 

viewed as a defect. For the pore amount to be used in 

production statistics or monitoring, the data is 

possible to be integrated and implemented 

automatically to other production software to easily 

monitor the production parameters. 

3.0 Discussion 

The most recognizable benefit of these machine 

learning powered inspections is the efficiency. For 

most cases there is no need for the inspector to look 

at data that contains no indication about flaws or 

flaws, thus the result is promptly available. 

Beside the considerable efficiency increase, the 

other significant benefit is the repeatability. Once the 

model has passed the qualification, the performance 

stays the same for future inspections. The 

performance stays predictable and there is no 

variation between evaluations. When compared to a 

human inspector, the performance of the evaluation is 

highly related to the inspector’s skill but also how 

mentally fit the inspector is to do the evaluation 

endeavour. 

 

 

Figure 5: Composite inspection with a machine 

learning model. Areas marked in red are tiny pores 

from the specimen. 

The repeatability is also highly linked to the 

overall reliability increase of the inspection. This 

reliability is measurable trough Probability of 

Detection (POD), which is well standardized practice 

in NDE [16]. POD elaborates the flaw size, which can 

be found the most feasibly, determining the critical 

flaw size. Auspiciously, missing of smaller flaws, is 

not significant comparing to a miss of a larger, critical 

sized one. Thus, the qualification effort needs to be 

set so, that the critical flaw size is found with high 

confidence. Through this high confidence, the 

inspector is always given the chance to evaluate the 

flaws within the scope of critical flaw sizes. 

Once the inspector is given the chance to evaluate 

all critical sized flaws and possibly variety of smaller 

flaws the inspection effort is still highly controlled by 

the inspector. This enables the inspectors to use their 

time more efficiently by evaluating actual indications 

and not looking for them in the data, as they could 

miss some of the indications. 

Finally, the ML opens completely new possibility 

for NDE by enabling larger variety of monitoring of 

the product. Features which are previously too 

laborious to monitor can now be implemented with 

ease with the aid of ML. This can either be 

implementing this monitoring to ongoing inspections 

or either inspecting the product with the goal of 

calculating porosity or other features. Furthermore, 

these approaches can be further integrated by 

automatically outputting the results in machine 

readable format for other systems to utilize and take 

advantage of. 

4.0 Conclusion 

Machine learning models have come to the NDE 

field and number of them are already in use. The 

models and approaches have matured to a point, 

where the machine learning models have passed the 

field trials in highly challenging data evaluations. 

Thus, the approaches are ready to increase the 

reliability of even the most safety critical industries. 

The main benefit of utilising machine learning in 

NDE is the significant increase in efficiency, but also 

in reliability. When the inspector is able to focus to 

look at the data which is probable to have a flaw, the 

inspector’s time is used more sensible way while still 

maintaining the control with the inspector. 

Machine learning powered inspections also enable 

completely different approach to inspections in 

general. Once the data analysis can be automated, it 

enables monitoring of manufacturing in completely 

different scale than before, completely unreachable 

by manual data analysis. 
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